Skip to main content
Log in

Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The γ→α transformation in 304 stainless steel can be induced by plastic deformation at room temperature. The kinetics of strain-induced transformations have been modeled recently by Olson and Cohen. We used magnetic techniques to monitor the progress of the γ→α transformation in 304 stainless steel sheet loaded in uniaxial and biaxial tension at both low (10-3 per second) and high (103 per second) strain rates. We found that using the von Mises effective strain criterion gives a reasonable correlation of transformation kinetics under general strain states. The principal effect of increased strain rate was observed at strains greater than 0.25. The temperature increase resulting from adiabatic heating was sufficient to suppress the γ→α transformation substantially at high rates. The consequences of the γ→α transformation on mechanical behavior were noted in uniaxial and biaxial tension. Uniaxial tension tests were conducted at temperatures ranging from 50 to -80°C. We found that both the strain hardening and transformation rates increased with decreasing temperature. However, the martensite transformation saturates at ≈85 pct volume fraction α. This can occur at strains less than 0.3 for conditions where the transformation is rapid. Once saturation occurs, the work hardening rate decreases rapidly and premature local plastic instability results. In biaxial tension, the same tendency toward plastic instability associated with high transformation rates provides a rationale for the low biaxial ductility of 304 stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Angel:J. Iron Steel Inst., 1954, vol. 177, p. 165.

    CAS  Google Scholar 

  2. B. Cina:J. Iron Steel Inst., 1954, vol. 177, p. 406.

    Google Scholar 

  3. J.A. Venables:Phil. Mag., 1962, vol. 7, p. 35.

    Article  Google Scholar 

  4. R. Lagneborg:Acta Met., 1964, vol. 12, p. 823.

    Article  CAS  Google Scholar 

  5. G.W. Powell, E.R. Marshall, and W. A. Backofen:Trans. ASM, 1958, vol. 50, p. 479.

    Google Scholar 

  6. C. J. Guntner and R. P. Reed:Trans. ASM, 1962, vol. 55, p. 399.

    CAS  Google Scholar 

  7. P. L. Manganon and G. Thomas:Metall. Trans., 1970, vol. 1, p. 1577.

    Article  Google Scholar 

  8. J. Dash and H. M. Otte:Acta Met., 1963, vol. 11, p. 1169.

    Article  CAS  Google Scholar 

  9. J. P. Bressanelli and A. Moskowitz:Trans. ASM, 1966, vol. 59, p. 223.

    CAS  Google Scholar 

  10. G. B. Olson and M. Cohen:J. Less-Common Metals, 1972, vol. 28, p. 107.

    Article  CAS  Google Scholar 

  11. P. C. Maxwell, A. Goldberg, and J. C. Shyne:Metall. Trans., 1974, vol. 5, p. 1305.

    Article  CAS  Google Scholar 

  12. K. Mathieu:Mitteilungen aus dem Kaiser Wilhelm Inst. für Eisenforschung, 1942, vol. 24, p. 243.

    CAS  Google Scholar 

  13. G.W. Form and W.M. Baldwin, Jr.:Trans. ASM, 1956, vol. 48, p. 474.

    Google Scholar 

  14. D. V. Neff, T. E. Mitchell, and A. R. Troiano:Trans. ASM, 1969, vol. 62, p. 858.

    CAS  Google Scholar 

  15. I. Tamura, T. Maki, and H. Hato:J. Jap. Inst. Metals, 1969, vol. 33, p. 1376.

    CAS  Google Scholar 

  16. J.R. Patel and M. Cohen:Acta. Met., 1953, vol. 1, p. 531.

    Article  CAS  Google Scholar 

  17. G. B. Olson and M. Cohen:Metall. Trans. A, 1975, vol. 6A, p. 791.

    CAS  Google Scholar 

  18. P. M. Kelly and J. Nutting:J. Iron Steel Inst., 1961, vol. 184, p. 199.

    Google Scholar 

  19. E. Lecroisey and A. Pineau:Metall. Trans., 1972, vol. 3, p. 387.

    CAS  Google Scholar 

  20. C. E. Frantz and S. S. Hecker: LASL Report 6258, November 1976, Los Alamos Scientific Laboratory, Los Alamos, NM 87545.

    Google Scholar 

  21. S.S. Hecker:Sheet Met. Ind., November 1975, p. 671.

  22. Mary Beth Sterns:Phys. Rev. B., 1976, vol. 13, p. 1183.

    Article  Google Scholar 

  23. S. S. Hecker:Constitutive Equations in Viscoplasticity: Computation and Engineering Aspects, Am. Soc. Mech. Engrs., 1976, p. 1.

  24. V. F. Zackay, E. R. Parker, D. Fahr, and R. Busch:Trans. ASM, 1967, vol. 60, p. 252.

    CAS  Google Scholar 

  25. G. B. Olson and M. Azrin:Metall. Trans. A, 1978, vol. 9A, p. 713.

    CAS  Google Scholar 

  26. D. P. Koistinen and N.M. Wang, eds.,Mechanics of Sheet Metal Forming: Material Behavior and Deformation Analysis, Plenum Press, 1978.

  27. S. S. Hecker, A. K. Ghosh, and H. L. Gegel, eds.,Formability: Analysis, Modeling and Experimentation, TMS-AIME, 1978.

  28. S.S. Hecker:F ormability: Analysis, Modeling and Experimentation, TMS-AIME, 1978, p. 150.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hecker, S.S., Stout, M.G., Staudhammer, K.P. et al. Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior. Metall Trans A 13, 619–626 (1982). https://doi.org/10.1007/BF02644427

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644427

Keywords

Navigation