Skip to main content
Log in

Rates of dissolution of rotating iron cylinders in liquid copper and cu-fe alloys

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Iron cylinders with molybdenum capped ends are rotated at speeds of 260, 570, and 835 rpm in liquid copper and Cu-Fe alloys maintained at 1220°, 1300°C, and 1370°C under argon at 1 atm pressure. The dependence of the dissolution rate of the cylinders on the concentration of iron in the bulk liquid is observed. The solution-rate constants defined by an approximate form of the Berthoud equation vary from 7 × 10-3 to 30 × 10-3 cm.s-1. There is a linear relation between the logarithm of the rate constant and the reciprocal of absolute temperature for each rotational speed. The rate constant is found to vary with the 0.85 to the 0.96 power of the Reynolds number in the range 6500 〈 Re 〈 22000. This suggests that the dissolution process is diffusion controlled. The dependence of the dissolution rate on the activity of iron in the bulk liquid is observed. Oxygen increases markedly the dissolution rate, whereas sulfur does not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Ward and J. W. Taylor:J. Inst. Metals, 1957, vol. 86, pp. 36–42.

    CAS  Google Scholar 

  2. J. M. Lommel and B. Chalmers:Trans. TMS-AIME, 1959, vol. 215, pp. 499- 508.

    CAS  Google Scholar 

  3. J. K. Jackson and R. E. Grace:Physical Chemistry of Process Metallurgy, part 1, pp. 633–44, Interscience Publishers, New York, 1961.

    Google Scholar 

  4. D. A. Stevenson and J. Wulff:Trans. TMS-AIME, 1961, vol. 221, pp. 279–85.

    CAS  Google Scholar 

  5. P. M. Shurygin and V. D. Shantarin:Phys. Met. Metallog., 1963, vol. 16, no. 5, pp. 81–86.

    Google Scholar 

  6. F. W. Hinzner and D. A. Stevenson:J. Phys. Chem., 1963, vol. 67, pp. 2424- 29.

    Article  CAS  Google Scholar 

  7. M. Miyake:Nippon Kinzoku Gakkaishi, 1964, vol. 28, pp. 111–16.

    CAS  Google Scholar 

  8. R. G. Olsson, V. Koump, and T. F. Perzak:Trans. TMS-AIME, 1965, vol. 233, pp. 1654–57.

    CAS  Google Scholar 

  9. R. G. Olsson, V. Koump, and T. F. Perzak:Trans. TMS-AIME, 1966, vol. 236, pp. 426–29.

    CAS  Google Scholar 

  10. M. Kosaka and S. Minowa:Tetsu-to-Hagané, 1967, vol. 53, pp. 1467–77.

    CAS  Google Scholar 

  11. T. F. Kassner:J. Electrochem. Soc, 1967, vol. 114, no. 7, pp. 689–94.

    Article  CAS  Google Scholar 

  12. W. D. Forgeng, Jr. and R. E. Grace:Trans. TMS-AIME, 1968, vol. 242, pp. 1249–52.

    CAS  Google Scholar 

  13. T. L. Sri Krishna, M. A. Dayananda, and R. E. Grace:Met. Trans., 1971, vol. 2, pp. 3355–59.

    CAS  Google Scholar 

  14. E. A. Moelwyn-Hughes:The Kinetics of Reactions in Solutions, 2nd ed., p. 374, Clarendon Press, Oxford, 1947.

    Google Scholar 

  15. M. Eisenberg, C. W. Tobias, and C. R. Wilke:Chem. Eng. Progr., Symp. Ser., 1955, vol. 51, no. 16, pp. 1–16.

    Google Scholar 

  16. T. H. Chilton and A. P. Colburn:Ind. Eng. Chem., 1934, vol. 26, pp. 1183–87.

    Article  CAS  Google Scholar 

  17. V. G. Levich:Physicochemical Hydrodynamics, p. 69, Prentice-Hall, New York, 1962.

    Google Scholar 

  18. L. S. Darken and R. W. Gurry:Physical Chemistry of Metals, McGraw-Hill Book Co., New York, 1953; a, p. 469; b, p. 462;c, p. 408.

    Google Scholar 

  19. J. P. Morris and G. R. Zellars:AIME Trans., 1956, vol. 206, pp. 1086–90.

    Google Scholar 

  20. R. Ohno:Nippon Kinzoku Gakkaishi, 1969, vol. 33, pp. 1053–59.

    CAS  Google Scholar 

  21. R. Ohno:Trans. Japan Inst. Metals, 1970, vol. 11, pp. 195–99.

    Google Scholar 

  22. M. Hansen:Constitution of Binary Alloys, 2nd ed., p. 581, McGraw-Hill Book Co., New York, 1958.

    Google Scholar 

  23. T. Ejima and M. Kameda:Nippon Kinzoku Gakkaishi, 1969, vol. 33, pp. 96- 103.

    CAS  Google Scholar 

  24. J. F. Elliott, M. Gleiser, and V. Ramakrishna:Thermochemistry for Steel- making, p. 640, Addison-Wesley Publishing Co., Cambridge, Mass., 1963.

    Google Scholar 

  25. L. S. Darken:Trans. TMS-AIME, 1967, vol. 239, pp. 80–89.

    CAS  Google Scholar 

  26. R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley:Selected Values of Thermodynamic Properties of Metals and Alloys, p. 107, John Wiley and Sons, Inc., New York, 1963.

    Google Scholar 

  27. K. Monma and H. Suto:Nippon Kinzoku Gakkaishi, 1960, vol. 24, pp. 377–79.

    CAS  Google Scholar 

  28. K. Monma and H. Suto:Nippon Kinzoku Gakkaishi, 1960, vol. 24, pp. 374–77.

    CAS  Google Scholar 

  29. J. F. Elliott and M. Gleiser:Thermochemistry for Steelmaking, Addison-Wesley Publishing Co., Reading, Mass., 1960; a, p. 177; b, p. 178; c, p. 179; d, p. 245.

    Google Scholar 

  30. O. Kubaschewski and J. A. Catterall:Thermochemical Data of Alloys, p. 178, Pergamon Press, London, 1956.

    Google Scholar 

  31. H. H. Kellogg:Can. Met. Quart., 1969, vol. 8, pp. 3–23.

    CAS  Google Scholar 

  32. W. A. Fischer and D. Janke:Z. Metallkunde, 1971, vol. 62, pp. 747–51.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, R. Rates of dissolution of rotating iron cylinders in liquid copper and cu-fe alloys. Metall Trans 4, 909–915 (1973). https://doi.org/10.1007/BF02645588

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645588

Keywords

Navigation