Skip to main content
Log in

Fatigue crack tip deformation Processes as Influenced by the Environment

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The shape of a fatigue crack tip as influenced by an air or a vacuum environment has been investigated in two stainless steels and an aluminum alloy. Under plane strain conditions and at crack growth rates in the Paris region, the crack tip opening displacement (CTOD) is much larger in vacuum than in air, a circumstance attributed to strain localization in air due to the presence of moisture and the absence of strain localization in vacuum. In type 304 stainless steel, a strain-induced transformation from austenite to martensite occurs at the crack tip, and the extent of this strain-induced transformation in type 304 stainless steel is consistent with the degree of blunting taking place at the crack tip as influenced by the environment. In air, the extent of transformation is a function of the ΔK level, and as a result, the crack opening level is found to differ in a ΔK decreasing test as compared to aAK increasing test. Fatigue striations are observed in air but are absent in vacuum. It is proposed that the greater extent of blunting in vacuum is responsible for the absence of striations in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. McEvily, W. Zagrany, J.L. Gonzalez, and S. Matsuoka: inBasic Mechanisms of Fatigue of Metals, P. Lukas and J. Polak, eds., Elsevier, New York, NY, 1988, pp. 271–79.

    Google Scholar 

  2. R.P. Wei: in ASTM STP 675, J.T. Fong, ed., ASTM, Philadelphia, PA, 1979, pp. 816-30.

  3. F.J. Bradshaw and C. Wheeler:Int. J. Fracture Mech., 1969, vol. 5, p. 255.

    Article  Google Scholar 

  4. C.D. Beachem:Metall. Trans., 1972, vol. 3, pp. 437–51.

    CAS  Google Scholar 

  5. S.P. Lynch:Acta Metall., 1988, vol. 36, pp. 2639–61.

    Article  CAS  Google Scholar 

  6. A. Onyewuenyi and J.P. Hirth:Metall. Trans. A, 1983, vol. 14A, pp. 259–69.

    Article  Google Scholar 

  7. T. Zhang and P. Haasen:Phil. Mag. A, 1989, vol. 60, pp. 15–38.

    Article  CAS  Google Scholar 

  8. N.M. Grinberg:Int. J. Fatigue, 1982, vol. 4, pp. 83–95.

    Article  CAS  Google Scholar 

  9. Z. Nishiyama: inMartensitic Transformation, M.E. Fine, ed., Academic Press, New York, NY, 1978, pp. 433–40.

    Google Scholar 

  10. A.D. Pineau and R.M. Pelloux:Metall. Trans. A, 1974, vol. 5, pp. 1103–12.

    Article  CAS  Google Scholar 

  11. C. Schuster and C. Alstetter:Metall. Trans. A, 1983, vol. 14A, pp. 2077–84.

    Article  CAS  Google Scholar 

  12. Z. Mei and J.W. Morris, Jr.:Metall. Trans. A, 1990, vol. 21A, pp. 3137–52.

    Article  CAS  Google Scholar 

  13. K. Ogura, Y. Miyoshi, and I. Nishikawa:Eng. Fracture Mech., 1986, vol. 25, pp. 31–46.

    Article  Google Scholar 

  14. A.J. McEvily and Z. Yang:Metall. Trans. A, 1990, vol. 21A, pp. 2117–21.

    Google Scholar 

  15. M. Kikukawa, M. Jono, and K. Tanaka:Proc. 2nd Int. Conf. on Mech. Behavior of Materials, Special Volume, ASM, Metals Park, OH, 1978, pp. 254–77.

    Google Scholar 

  16. J.R. Rice: inFatigue Crack Propagation, ASTM STP 415, ASTM, Philadelphia, PA, I967, pp. 247–311.

    Google Scholar 

  17. B.D. Cullity:Elements of X-Ray Diffraction, Addison-Wesley, Reading, MA, 1956, pp. 269–72 and 411-19.

    Google Scholar 

  18. K. Minakawa and A.J. McEvily:Scripta Metall., 1981, vol. 15, pp. 633–36.

    Article  Google Scholar 

  19. W. Elber:Eng. Fracture Mech., 1971, vol. 2, pp. 37–45.

    Google Scholar 

  20. A. Ohta and E. Sasaki:Acta Metall., 1972, vol. 20, pp. 657–60.

    Article  CAS  Google Scholar 

  21. P. Neumann:Acta Metall., 1974, vol. 22, p. 1155.

    Article  CAS  Google Scholar 

  22. G. Ming, P.S. Pao, and R.P. Wei:Metall. Trans. A, 1988, vol. 19A, pp. 1739–50.

    Google Scholar 

  23. M.O. Speidel: inCorrosion in Power Generating Equipment, M.O. Speidel and A. Atrens, eds., Plenum Press, New York, NY, 1984, pp. 85–132.

    Google Scholar 

  24. D.A. Meyn:Trans. ASM, 1968, vol. 61, pp. 42–48.

    Google Scholar 

  25. C. Laird: in ASTM STP 415, ASTM, Philadelphia, PA, 1967, p. 131.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEvily, A.J., Gonzalez Velazquez, J.L. Fatigue crack tip deformation Processes as Influenced by the Environment. Metall Trans A 23, 2211–2221 (1992). https://doi.org/10.1007/BF02646014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646014

Keywords

Navigation