Skip to main content
Log in

Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The crystallography, structure, and composition of the strengthening precipitates in maraging steels C-250 and T-250 have been studied utilizing analytical electron microscopy and computersimulated electron diffraction patterns. The kinetics of precipitation were studied by electrical resistivity and microhardness measurements and could be described adequately by the Johnson-Mehl-Avarami equation, with precipitate nucleation occurring on dislocations and growth proceeding by a mechanism in which the dislocations serve as collector lines for solute from the matrix along which pipe diffusion occurs. The strengthening of the Co-free, higher Ti T-250 steel is caused by a refined distribution of Ni3Ti precipitates. High strength is maintained at longer times from the combined effect of a high resistance of these precipitates to coarsening and a small volume fraction of reverted austenite. In the case of the Co-containing, lower Ti C-250 steel, strengthening results from the combined presence of Ni3Ti (initially) and Fe2Mo precipitates (at longer times). Loss of strength at longer times is associated, in part, with overaging and mainly from the larger volume fraction of reverted austenite. The resistance to austenite reversion is dependent on the manner in which the relative nickel content of the martensite matrix is affected by the precipitating phases, and the difference in the reversion tendency between the two steels can be explained on this basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Floreen:Met. Rev., 1968, vol. 13, pp. 115–28.

    CAS  Google Scholar 

  2. J.M. Chilton and C.J. Barton:Trans. Q. ASM, 1967, vol. 60, pp. 528–42.

    CAS  Google Scholar 

  3. B.G. Reisdorf:Trans. Q. ASM, 1963, vol. 56, pp. 783–86.

    CAS  Google Scholar 

  4. A.J. Baker and P.R. Swann:Trans. Q. ASM, 1964, vol. 57, pp. 1008–11.

    CAS  Google Scholar 

  5. K. Shimizu and H. Okamoto:Trans. Jpn. Inst. Met., 1971, vol. 12, pp. 270–79.

    Google Scholar 

  6. G.P. Miller and W.I. Mitchell:J. Iron Steel Inst., 1965, vol. 20, pp. 899–904.

    Google Scholar 

  7. H.L. Marcus, L.H. Schwartz, and M.E. Fine:Trans. Q. ASM, 1966, vol. 59, p. 468.

    CAS  Google Scholar 

  8. J.B. Lecomte, C. Servant, and G. Cizeron:J. Mater. Sci., 1985, vol. 20, pp. 3339–52.

    Article  CAS  Google Scholar 

  9. D.M. Vanderwalker:Metall. Trans. A, 1987, vol. 18A, pp. 1191–94.

    CAS  Google Scholar 

  10. D.M. Vanderwalker: inMaraging Steels—Recent Developments and Applications, TMS-AIME, Warrendale, PA, 1988, pp. 255–68.

    Google Scholar 

  11. G. Cliff and G.W. Lorimer, Jr.:J. Microsc, 1975, vol. 103, pp. 203–07.

    Google Scholar 

  12. D.T. Peters and C.R. Cupp:Trans. TMS-AIME, 1966, vol. 236, pp. 1420–29.

    CAS  Google Scholar 

  13. J. Burke: inThe Kinetics of Phase Transformations in Metals, Pergamon Press, New York, NY, 1965, pp. 36–60.

    Google Scholar 

  14. V.K. Vasudevan, S.J. Kim, and C.M. Wayman: inMaraging Steels—Recent Developments and Applications, TMS-AIME, Warrendale, PA, 1988, pp. 283–93.

    Google Scholar 

  15. A. Taylor and R.W. Floyd:Acta Crystallogr., 1950, vol. 3, pp. 285–89.

    Article  CAS  Google Scholar 

  16. P. Villars and L.D. Calvert: inPearson’s Handbook of Crystallographic Data for Inter-metallic Phases, ASM, Metals Park, OH, 1985, vol. 3, p. 2905.

    Google Scholar 

  17. A.T. Davenport:J. Iron Steel Inst., 1968, vol. 206, pp. 499–501.

    CAS  Google Scholar 

  18. S.R. Keown and D.J. Dyson:J. Iron Steel Inst., 1966, vol. 204, pp. 832–36.

    Google Scholar 

  19. M.A. Krishtal: inDiffusion Processes in Iron Alloys, translated from Russian by the Israel Program for Scientific Translations Ltd., Jerusalem, Israel, 1970, pp. 175–203.

    Google Scholar 

  20. C.J. Bechtoldt and H.C. Vacher:J. Res. Nat. Bur. Stand. (U.S.), 1957, vol. 58, p. 7.

    CAS  Google Scholar 

  21. A.F. Yedneral and M.D. Perkas:Fiz. Met. Metalloved., 1969, vol. 28, pp. 862–71.

    Google Scholar 

  22. S. Saito and P. Beck:Trans. TMS-AIME, 1959, vol. 215, pp. 938–41.

    CAS  Google Scholar 

  23. R.K. Pitler and G.S. Ansell:Trans. Q. ASM, 1964, vol. 56, pp. 220–46.

    Google Scholar 

  24. K. Detert:Trans. Q. ASM, 1966, vol. 59, pp. 262–76.

    CAS  Google Scholar 

  25. S. Floreen and R.F. Decker:Trans. Q. ASM, 1962, vol. 55, p. 518.

    CAS  Google Scholar 

  26. S. Floreen:Trans. Q. ASM, 1964, vol. 57, p. 38.

    CAS  Google Scholar 

  27. J.W. Christian: inThe Theory of Phase Transformations in Metals and Alloys, Pergamon Press, New York, NY, 1965, pp. 471–95.

    Google Scholar 

  28. A.H. Cottrell and B.A. Bilby:Proc. Phys. Soc, 1949, vol. A62, p. 49.

    Google Scholar 

  29. S. Harper:Phys. Rev., 1951, vol. 83, p. 209.

    Article  Google Scholar 

  30. J.W. Cahn:Acta Metall., 1957, vol. 5, p. 169.

    Article  CAS  Google Scholar 

  31. C.C. Dollins:Acta Metall., 1970, vol. 18, p. 1209.

    Article  CAS  Google Scholar 

  32. R. Gomez-Ramirez and G.M. Pound:Metall. Trans., 1973, vol. 4, pp. 1563–70.

    CAS  Google Scholar 

  33. L. Katgerman and J. Van Liere:Acta Metall., 1978, vol. 26, pp. 361–67.

    Article  Google Scholar 

  34. K.C. Russell and H.I. Aaronson:J. Mater. Sci., 1975, vol. 10, pp. 1991–99.

    Article  CAS  Google Scholar 

  35. R.D. Garwood and R.D. Jones:J. Iron Steel Inst., 1966, vol. 204, pp. 512–19.

    CAS  Google Scholar 

  36. H. Kreye:Z. Metallkd., 1970, vol. 61, pp. 108–12.

    CAS  Google Scholar 

  37. R.M. Allen and J.B. Vander Sande: inSolid → Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, pp. 655–59.

    Google Scholar 

  38. D.T. Peters and S. Floreen:Trans. AIME, 1969, vol. 245, pp. 2021–26.

    CAS  Google Scholar 

  39. A. Kelly and R.B. Nicholson:Prog. Mater. Sci., 1963, vol. 10, pp. 149–391.

    Google Scholar 

  40. Stephen Spooner, H.J. Rack, and David Kalish:Metall. Trans., 1971, vol. 2, pp. 2306–08.

    CAS  Google Scholar 

  41. B.G. Reisdorf and A.J. Baker:Air Force Materials Laboratory Tech. Rep., Wright-Patterson Air Force Base, Dayton, OH, 1965, no. AFML-TR-64-390.

    Google Scholar 

  42. G.S. Ansell and F.V. Lenel:Acta Metall., 1960, vol. 8, pp. 612–16.

    Article  Google Scholar 

  43. G.S. Ansell:Acta Metall., 1961, vol. 9, pp. 518–19.

    Article  Google Scholar 

  44. S. Floreen and A.M. Bayer: inMaraging Steels—Recent Developments and Applications, TMS-AIME, Warrendale, PA, 1988, pp. 39–54.

    Google Scholar 

  45. R.F. Decker: inSource Book on Maraging Steels, ASM, Metals Park, OH, 1979, p. 358.

    Google Scholar 

  46. D.T. Peters:Trans. Q. ASM, 1968, vol. 61, pp. 62–67.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the University of Illinois,

Formerly with the University of Illinois

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, V.K., Kim, S.J. & Wayman, C.M. Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels. Metall Trans A 21, 2655–2668 (1990). https://doi.org/10.1007/BF02646061

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646061

Keywords

Navigation