Skip to main content
Log in

Distributed-activation kinetics of Heterogeneous Martensitic Nucleation

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Martensitic nucleation under normal circumstances is a heterogeneous process, and the heterogeneity can be explained by the potency distribution of defects that provide the nucleation sites, including both preexisting and autocatalytically generated defects. The potency distribu- tion of the preexisting defects has been shown earlier by small-particle studies to follow an exponential function, whereas that of the autocatalytic defects is found in the present work to obey a Gaussian function. A major distinction between these two distributions is that the number density of thepreexisting defects increases monotonically with decreasing defect potency, while the number density of theautocatalytic defects is distributed about a mode, giving a saturation level of its cumulative distribution. As a result of these potency distributions, the nucleating sites of both origins exhibit distributions in their activation energies for nucleation, and a distributed- activation kinetic model is now proposed to take these variations into account for martensitic transformations. The features of this model are tested with considerable success in experiments on an Fe-32.3Ni alloy, leading to calculations of the entire course of martensitic transformation curves (including the athermal, anisothermal, and isothermal contributions), the changing shapes of time-temperature-transformation (TTT) diagrams for a range of Fe-Ni compositions, and the grain-size dependence of “bursting” behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Kimmel and D.R. Uhlmann:J. Appl. Phys., 1969, vol. 40, pp. 4254–60.

    Article  CAS  Google Scholar 

  2. A.S. Argon and H.Y. Kuo:J. Non-Crystalline Solids, 1980, vol. 37, pp. 241–66.

    Article  CAS  Google Scholar 

  3. ES. Machlin and Morris Cohen:Trans. AIME, 1952, vol. 194, pp. 489–500.

    Google Scholar 

  4. C L. Magee:Metall. Trans., 1971, vol. 2, pp. 2419–30.

    Article  CAS  Google Scholar 

  5. V. Raghavan and Morris Cohen:Metall Trans., 1971, vol. 2, pp. 2409–18.

    Article  CAS  Google Scholar 

  6. V. Raghavan: inMartensite, G.B. Olson and W.S. Owen, eds., ASM, Metals Park, OH, 1992.

    Google Scholar 

  7. R.E. Cech and D. Turnbull:Trans. AIME, 1956, vol. 206, pp. 124–32.

    Google Scholar 

  8. G.B. Olson and Morris Cohen:New Aspects of Martensitic Transformation, Japan Institute of Metals, Kobe, Japan, 1977, pp. 93–98.

    Google Scholar 

  9. I.-Wei Chen, Y.-H. Chiao, and K. Tsuzaki:acta Metall., 1985, vol. 33, pp. 1847–59.

    Article  CAS  Google Scholar 

  10. S. Kajiwara, S. Ohno, K. Honma, and M. Uda:Proc. ICOMAT 86, Japan Institute of Metals, Nara, Japan, 1986, pp. 359–64.

    Google Scholar 

  11. S. Kajiwara, S. Ohno, and K. Honma:Phil. Mag. A, 1991, vol. 63, pp. 625–44.

    Article  CAS  Google Scholar 

  12. T.F. Kelly, M. Cohen, and J.B. Vander Sande:Metall. Trans. A, 1984, vol. 15A, pp. 819–33.

    Article  CAS  Google Scholar 

  13. G.B. Olson, K. Tsuzaki, and Morris Cohen:David Turnbull Symp. on Phase Transitions in Condensed Systems, G.S. Cargill, F. Spaepen, and K.N. Tu, eds., MRS, Pittsburgh, PA, 1987, vol. 57, pp. 127–48.

    Google Scholar 

  14. G.B. Olson and Morris Cohen:Metall. Trans. A, 1976, vol. 7A, pp. 1915–23.

    Article  CAS  Google Scholar 

  15. G.B. Olson and Morris Cohen:Ann. Rev. Mater. Sci., 1981, vol. 11, pp. 1–30.

    Article  CAS  Google Scholar 

  16. R.L. Fullman:Trans. AIME, 1953, vol. 197, pp. 447–52.

    CAS  Google Scholar 

  17. D.G. McMurtrie and C.L. Magee:Metall. Trans., 1970, vol. 1, pp. 3185–91.

    Article  CAS  Google Scholar 

  18. G.B. Olson and Morris Cohen:Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.

    CAS  Google Scholar 

  19. G.B. Olson and Morris Cohen: inDislocations in Solids, Vol. 7, F.R.N. Nabarro, ed., North-Holland, Amsterdam, 1986, pp. 295–407.

    Google Scholar 

  20. G. Hausch and H. Warlimont:acta Metall., 1973, vol. 21, pp. 401–14.

    Article  CAS  Google Scholar 

  21. D.M. Haezebrouck: Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1987.

    Google Scholar 

  22. M. Grujicic, H.C. Ling, D.M. Haezebrouck, and W.S. Owen: inMartensite, G.B. Olson and W.S. Owen, eds., ASM, Metals Park, OH, 1992.

    Google Scholar 

  23. L. Kaufman: Manlabs-NPL Thermochemical Database, 1977.

  24. K. Uakko, M. Nieminen, and J. Pietikainen:Martensitic Transformations, Proc. ICOMAT 89, Sydney, Australia, B.C. Muddle, ed.,Materials Science Forum Vols. 56-58, Trans Tech Publications, Aedermannsdorf, Switzerland, 1990, pp. 225–28.

    Google Scholar 

  25. K. Tsuzaki, T. Fukiage, T. Maki, and I. Tamura:Martensitic Transformations, Proc. ICOMAT 89, Sydney, Australia, B.C. Muddle, ed.,Materials Science Forum Vols. 56–58, Trans Tech Publications, Aedermannsdorf, Switzerland, 1990, pp. 229–34.

    Google Scholar 

  26. K. Tsuzaki and T. Maki:J. Japan Inst. Met., 1981, vol. 45, pp. 126–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Massachusetts Institute of Technology, is Research Engineer, Bethlehem Steel Corporation, Bethlehem, PA 18016.

Formerly Senior Research Associate, Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, M., Olson, G.B. & Cohen, M. Distributed-activation kinetics of Heterogeneous Martensitic Nucleation. Metall Trans A 23, 2987–2998 (1992). https://doi.org/10.1007/BF02646117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646117

Keywords

Navigation