Skip to main content
Log in

Optimization of hot workability in stainless Steel-Type AlSl 304L Using Processing Maps

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The hot working behavior of 304L stainless steel is characterized using processing maps developed on the basis of the Dynamic Materials Model and hot compression data in the tem- perature range of 700 °C to 1200 °C and strain-rate range of 0.001 to 100 s♪-1. The material exhibits a dynamic recrystallization (DRX) domain in the temperature range of 1000 °C to 1200 °C and strain-rate range of 0.01 to 5 s-1. Optimum hot workability occurs at 1150 °C and 0.1 s-1, which corresponds to a peak efficiency of 33 pct in the DRX domain. Finer grain sizes are obtained at the lower end of the DRX domain (1000 °C and 0.1 s-1). The material exhibits a dynamic recovery domain in the temperature range of 750 °C to 950 °C and at 0.001 s"1. Flow instabilities occur in the entire region above the dynamic recovery and recrystallization domains. Flow localization occurs in the regions of instability at temperatures lower than 1000 °C, and ferrite formation is responsible for the instability at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Ahlblom and R. Sandstrom:Int. Met. Rev., 1982, vol. 27^(1), p. 1.

    Google Scholar 

  2. N.D. Ryan and H.J. McQueen:Can. Metall. Q., 1990, vol. 29^(2), p. 147.

    Article  Google Scholar 

  3. N.D. Ryan and HJ. McQueen:J. High Temp. Technol., 1990, vol. 8(1), p. 27 and vol. 8 (3), p. 185.

    Article  CAS  Google Scholar 

  4. D.R. Barraclough and CM. Sellars:Met. Sci., 1979, vol. 13, p. 257.

    Article  CAS  Google Scholar 

  5. S.L. Semiatin and J.H. Holbrook:Metall. Trans. A, 1983, vol. 14A, pp. 1681-95 and 2091–99.

    Article  Google Scholar 

  6. M.C. Mataya, E.L. Brown, and M.P. Riendeau:Metall. Trans. A, 1990, vol. 21A, pp. 1969–87.

    Article  CAS  Google Scholar 

  7. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker:Metall. Trans. A, 1984, vol. 15A, pp. 1883–92.

    Article  CAS  Google Scholar 

  8. H.L. Gegel, J.C. Malas, S.M. Doraivelu, and V.A. Shende:Metals Handbook, ASM, Metals Park, OH, 1987, vol. 14, p. 417.

    Google Scholar 

  9. J.M. Alexander: inModeling of Hot Deformation of Steels, J.G. Lenard, ed., Springer-Verlag, Berlin, 1984, p. 101.

    Google Scholar 

  10. H. Ziegler:Progress in Solid Mechanics, John Wiley and Sons, New York, NY, 1983, vol. 4, p. 93.

    Google Scholar 

  11. A.K.S. Kalyan Kumar: M.Sc. Thesis, Indian Institute of Science, Bangalore, India, 1987.

    Google Scholar 

  12. Y.V.R.K. Prasad:Indian J. Tech., 1990, vol. 28, p. 435.

    CAS  Google Scholar 

  13. R. Raj:Metall. Trans. A, 1981, vol. 12A, pp. 1089–97.

    Article  Google Scholar 

  14. N. Ravichandran and Y.V.R.K. Prasad:Metall. Trans. A, 1991, vol. 22A, pp. 2339–48.

    Article  CAS  Google Scholar 

  15. J.K. Chakravarthy, Y.V.R.K. Prasad, and M.K. Asundi:Metall. Trans. A, 1991, vol. 22A, pp. 829–36.

    Article  Google Scholar 

  16. N. Ravichandran and Y.V.R.K. Prasad:Bull. Mater. Sci., 1991, vol. 14^(5), p. 1241.

    Google Scholar 

  17. R.K. Dayal, N. Parvathavarthini, J.B. Gnanamoorthy, and P. Rodriguez:Met. Mater. Proc, 1989, vol. 1^(2), p. 123.

    Google Scholar 

  18. H.J. Frost and M.F. Ashby:Deformation Mechanism Maps, Pergamon Press, New York, NY, 1982.

    Google Scholar 

  19. W. Roberts, H. Boden, and B. Ahlblom:Mater. Sci., 1979, vol. 13, p. 195.

    CAS  Google Scholar 

  20. William Roberts: inDeformation, Processing, and Structure, George Krauss, ed., ASM, Metals Park, OH, 1984, pp. 109–84.

    Google Scholar 

  21. M.K. Malik:Extrusion Principles and Applications to Steel, Proc. Intensive Course on Technology of Metal Forming, American Society for Metals-India Chapter and Indian Institute of Metals- Bombay Chapter, Feb. 26-28, 1982, p. 3.1.

  22. S.L. Semiatin and G.D. Lahoti:Metall. Trans. A, 1981, vol. 12A, pp. 1705-17 and 1719–28.

    Article  Google Scholar 

  23. K. Bhanu Sankara Rao, M. Valsan, R. Sandhya, S.L. Mannan, and P. Rodriguez:Trans. Indian Inst. Met., 1991, vol. 44 (3), p. 255.

    Google Scholar 

  24. M.G. Cockroft:Ductility, ASM, Cleveland, OH, 1968, p. 199.

    Google Scholar 

  25. P. Rodriguez:Bull. Mater. Sci., 1984, vol. 6^(4), p. 653.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venugopal, S., Mannan, S.L. & Prasad, Y.V.R.K. Optimization of hot workability in stainless Steel-Type AlSl 304L Using Processing Maps. Metall Trans A 23, 3093–3103 (1992). https://doi.org/10.1007/BF02646128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646128

Keywords

Navigation