Skip to main content
Log in

Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen-induced slow crack growth (SCG) was compared in austenitic and ferritic stainless steels at 0 to 125 °Cand 11 to 216 kPa of hydrogen gas. No SCG was observed for AISI 310, while AISI 301 was more susceptible to hydrogen embrittlement and had higher cracking velocity than AL 29-4-2 under the same test conditions. The kinetics of crack propagation was modeled in terms of the hydrogen transport in these alloys. This is a function of temperature, microstructure, and stress state in the embrittlement region. The relatively high cracking velocity of AISI 301 was shown to be controlled by the fast transport of hydrogen through the stress-induced α′ martensite at the crack tip and low escape rate of hydrogen through the γ phase in the surrounding region. Faster accumulation rates of hydrogen in the embrittlement region were expected for AISI 301, which led to higher cracking velocities. The mechanism of hydrogen-induced SCG was discussed based upon the concept of hydrogen-enhanced plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Eliezer, D. G. Chakrapani, C. J. Altstetter, and E. N. Pugh:Metall. Trans. A, 1979, vol. 10A, p. 935.

    CAS  Google Scholar 

  2. R. Liu, N. Narita, C. Altstetter, H. Birnbaum, and E. N. Pugh:Metall. Trans. A, 1980, vol. 11 A, p. 1563.

    Google Scholar 

  3. N. Narita and H. K. Birnbaum:Scripta Met., 1980, vol. 14, p. 1355.

    Article  CAS  Google Scholar 

  4. S. Singh and C. Altstetter:Metall. Trans. A, 1982, vol. 13A, p. 1799.

    Google Scholar 

  5. G. Schuster and C. Altstetter:Metall. Trans. A, 1983, vol. 14A, p. 2085.

    CAS  Google Scholar 

  6. A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  7. R. A. Oriani and P. H. Josephic:Acta Metall., 1974, vol. 22, p. 1065.

    Article  CAS  Google Scholar 

  8. R. A. Oriani and P. H. Josephic:Acta Metall., 1977, vol. 25, p. 979.

    Article  CAS  Google Scholar 

  9. W. W. Gerberich, Y. T. Chen, and C. St. John:Metall. Trans. A, 1975, vol. 6A, p. 1485.

    CAS  Google Scholar 

  10. W. W. Gerberich and Y. T. Chen:Metall. Trans. A, 1975, vol. 6A, p. 271.

    CAS  Google Scholar 

  11. W. W. Gerberich, J. Garry, and J. F. Lessar: “Effects of Hydrogen on Behavior of Materials”, A. W. Thompson and I. M. Bernstein, eds., Moran, WY, 1975, TMS-AIME, 1976, p. 70.

  12. H. P. van Leeuwen:Corrosion, 1973, vol. 29, p. 197.

    Google Scholar 

  13. H. P. van Leeuwen:Corrosion, 1975, vol. 31, p. 154.

    Google Scholar 

  14. T. P. Perng and C. J. Altstetter:Acta Metall., 1986, vol. 34, p. 1771.

    Article  CAS  Google Scholar 

  15. W. F. Brown, Jr. and J. E. Srawley: ASTM STP 410, ASTM, 1966.

  16. R. P. Wei:Hydrogen Effects in Metals, I. M. Bernstein and A. W. Thompson, eds., TMS-AIME, Warrendale, PA, 1980, p. 677.

    Google Scholar 

  17. M. Gao, M. Lu, and R. P. Wei:Metall. Trans. A, 1984, vol. 15A, p. 735.

    CAS  Google Scholar 

  18. R. P. Gangloff and R. P. Wei:Metall. Trans. A, 1977, vol. 8A, p. 1043.

    CAS  Google Scholar 

  19. H. G. Nelson and D. P. Williams:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R. W. Staehle, J. Hochmann, R. D. McCright, and J. E. Slater, eds., NACE, 1977, p. 382.

  20. R. A. Oriani:Ber. Bunse. Phyz. Chem., 1972, vol. 76, p. 848.

    CAS  Google Scholar 

  21. M. R. Louthan, G. R. Caskey, Jr., J. A. Donovan, and D. E. Rawl:Mater. Sci. Eng., 1972, vol. 10, p. 357.

    Article  CAS  Google Scholar 

  22. A.W. Thompson:Metall. Trans., 1973, vol. 4, p. 2819.

    CAS  Google Scholar 

  23. A. S. Tetelman:Fracture of Solids, D. C. Drucker and J. J. Gilman, eds., Gordon and Breach, New York, NY, 1962, p. 671.

    Google Scholar 

  24. A. S. Tetelman:Fundamental Aspects of Stress Corrosion Cracking, R. W. Staehle, ed., NACE, Houston, TX, 1969, p. 446.

    Google Scholar 

  25. C. D. Beachem:Metall. Trans., 1972, vol. 3, p. 437.

    CAS  Google Scholar 

  26. T. Matsumoto, J. Eastman, and H. K. Birnbaum:Scripta Met., 1981, vol. 15, p. 1033.

    Article  CAS  Google Scholar 

  27. T. Tabata and H. K. Bimbaum:Scripta Met., 1983, vol. 17, p. 947.

    Article  CAS  Google Scholar 

  28. T. Tabata and H. K. Birnbaum:Scripta Met., 1984, vol. 18, p. 231.

    Article  CAS  Google Scholar 

  29. I. M. Robertson and H. K. Birnbaum:Scripta Met., 1984, vol. 18, p. 269.

    Article  CAS  Google Scholar 

  30. H. van Leeuwen:Rev. on Coatings and Corrosion, 1979, vol. 9, p. 5.

    Google Scholar 

  31. J. R. Rice and M. A. Johnson:Inelastic Behavior of Solids, McGraw- Hill, New York, NY, 1970, p. 641.

    Google Scholar 

  32. H. H. Johnson:Hydrogen in Metals, I. Bernstein and A. Thompson, eds., ASM, Metals Park, OH, 1974, p. 35.

    Google Scholar 

  33. D. Williams and H. Nelson:Metall. Trans., 1970, vol. 1, p. 63.

    CAS  Google Scholar 

  34. M. Lu, P. S. Pao, T. W. Weir, G. W. Simmons, and R. P. Wei:Metall. Trans. A, 1981, vol. 12A, p. 805.

    Google Scholar 

  35. E. A. Steigerwald, F. W. Schaller, and A. R. Troiano:Trans. AIME, 1959, vol. 215, p. 1048.

    CAS  Google Scholar 

  36. N. R. Moody and W. W. Gerberich:Metall. Trans. A, 1980, vol. 11A, p. 973.

    CAS  Google Scholar 

  37. H. G. Nelson, D. P. Williams, and A. S. Tetelman:Metall. Trans., 1971, vol. 2, p. 953.

    CAS  Google Scholar 

  38. R. A. Oriani:Metall. Trans., 1970, vol. 1, p. 2346.

    CAS  Google Scholar 

  39. V. Sawicki and H. H. Johnson:Metall. Trans., 1971, vol. 2, p. 3496.

    CAS  Google Scholar 

  40. R. A. Oriani:Fundamental Aspects of Stress Corrosion Cracking, R. W. Staehle, A. J. Forty, and D. VanRooyen, eds., NACE, 1969, p. 32.

  41. M. J. Johnson, T. P. Perng, and C. J. Altstetter: Univ. of Illinois at Urbana-Champaign, unpublished research, 1986.

  42. A. W. Thompson:Mater. Sci. Eng., 1974, vol. 14, p. 253.

    Article  CAS  Google Scholar 

  43. J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards:Metall. Trans. A, 1976, vol. 7A, p. 821.

    CAS  Google Scholar 

  44. N. J. Petch and P. Stables:Nature, 1952, vol. 169, p. 842.

    Article  Google Scholar 

  45. N. J. Petch:Phil. Mag., 1956, vol. 1, p. 331.

    CAS  Google Scholar 

  46. M. R. Louthan:Hydrogen in Metals, I. Bernstein and A. Thompson, eds., ASM, Metal's Park, OH, 1974, p. 53.

    Google Scholar 

  47. M. W. Perra:Environmental Degradation of Engineering Materials in Hydrogen, M. Louthan, R. McNitt, and R. Sisson, Jr., eds., Virginia Polytechnic Institute, Blacksburg, VA, 1981, p. 321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Associate of the University of Illinois

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perng, T.P., Altstetter, C.J. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels. Metall Trans A 18, 123–134 (1987). https://doi.org/10.1007/BF02646229

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646229

Keywords

Navigation