Skip to main content
Log in

Precipitation Hardening in 350 Grade Maraging Steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Evolution of microstructure in a 350 grade commercial maraging steel has been examined. In the earlier stages of aging, the strengthening phases are formed by the heterogeneous precipitation, and these phases have been identified as intermetallic compounds of the Ni3 (Ti, Mo) and Fe2Mo types. The kinetics of precipitation are studied in terms of the activation energy by carrying out isothermal hardness measurements of aged material. The mechanical properties in the peak-aged and overaged conditions were evaluated and the flow behavior examined. The overaging behavior of the steel has been studied and the formation of austenite of different morphologies identified. The crystallography of the austenite has been examined in detail. From the microstructural examination of peak-aged and deformed samples, it could be inferred that the dislocation-precipitate interaction is by precipitate shearing. Increased work hardening of the material in the overaged condition was suggestive of looping of precipitates by dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Floreen:Met. Rev., 1968, vol. 13, pp. 115–28.

    Article  CAS  Google Scholar 

  2. G.W. Tuffnell and R.N. Cairns:Trans. ASM, 1968, vol. 61, pp. 798–806.

    CAS  Google Scholar 

  3. J.B. Lecompte, C. Servant, and G. Cizon:J. Mater. Sci., 1985, vol. 20, pp. 3339–52.

    Article  Google Scholar 

  4. J. Singh and CM. Wayman:Mater. Sci. Eng., 1987, vol. 94, pp. 233–42.

    Article  CAS  Google Scholar 

  5. L.T. Shiang and CM. Wayman:Metallography, 1988, vol. 21, pp. 399–423.

    Article  CAS  Google Scholar 

  6. D.M. Vanderwalker:Metall. Trans. A, 1987, vol. 18A, pp. 1191–94.

    Article  CAS  Google Scholar 

  7. V.K. Vasudevan, S.J. Kim, and CM. Wayman:Metall. Trans. A, vol. 21A, 1990, pp. 2655–68.

    Article  CAS  Google Scholar 

  8. P. Ludwick:Elemente Der Technologischen Mechanik, Springer-Verlag, Berlin, 1909, p. 32.

    Book  Google Scholar 

  9. Z. Nishiyama:Sci. Rep. Tokohu Univ., 1934, vol. 23, p. 638.

    Google Scholar 

  10. G. Wassermann:Arch. Eisenhütt, 1993, vol. 16, p. 647.

    Google Scholar 

  11. G. Kudjumov and G. Sachs:Z. Phys., 1930, vol. 64, p. 325.

    Article  Google Scholar 

  12. S. Spooner, H.J. Rack, and D. Kalish:Metall., 1971, vol. 2, pp. 2306–08.

    CAS  Google Scholar 

  13. H.J. Rack and D. Kalish:Metall. Trans., 1971, vol. 2, pp. 3011–20.

    Article  CAS  Google Scholar 

  14. R.B. Banerjee and J.J. Hauser:Technical Report No. AFML-TR-66-166, Air Force Materials Lab., Wright-Patterson AFB, Ohio (USA), 1966.

    Google Scholar 

  15. R.F. Decker, J.T. Eash, and A.J. Goldman:Trans. Q. ASM, 1962, vol. 55, pp. 58–76.

    Google Scholar 

  16. C.J. Novak and L.M. Diran:J. Met., 1963, vol. 15, pp. 200–04.

    CAS  Google Scholar 

  17. S. Floreen and G.R. Speich:Trans. Q. ASM, 1964, vol. 57, pp. 714–26.

    CAS  Google Scholar 

  18. R.F. Decker: Proc. Symp.Relation between the Structure and Properties of Metals, NPL, Teddington, England, 1963, pp. 648–71.

    Google Scholar 

  19. M.D. Perkas:Met. Sci. Heat Treat., 1968, vol. 6, pp. 415–25.

    Article  Google Scholar 

  20. D.T. Peters:Trans. Q. ASM, 1968, vol. 61, pp. 62–67.

    CAS  Google Scholar 

  21. D.T. Peters and S. Floreen:Trans. AIME, 1969, vol. 245, pp. 2021–26.

    CAS  Google Scholar 

  22. M.K. Krishtal: inDiffusion Processes in Iron Alloys, Translated from Russian by the Israel Programme for Scientific Translations Ltd., Jerusalem, Israel, 1970, pp. 175–203.

    Google Scholar 

  23. U.K. Viswanathan, P.K.K. Nayar, and R. Krishnan:Mater. Sci. Technol., 1989, vol. 5, pp. 346–49.

    Article  CAS  Google Scholar 

  24. R.L. Patterson and CM. Wayman:Acta Metall., 1966, vol. 14, pp. 347–69.

    Article  CAS  Google Scholar 

  25. W.A. Spitzig, J.M. Chilton, and C.J. Barton:Trans. ASM, 1968, vol. 61, pp. 299–303.

    Google Scholar 

  26. S.L. Sass:Trans. AIME, 1969, vol. 245, pp. 1836–38.

    CAS  Google Scholar 

  27. P. Villars and L.D. Calvert:Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park, OH, 1985, vol. 3, p. 2905.

    Google Scholar 

  28. J. Higgins and P. Wilkes:Phil. Mag., 1972, vol. 25, pp. 599–623.

    Article  CAS  Google Scholar 

  29. J.P. Michel:Mem. Sci. Rev. Met., 1971, vol. 58, pp. 785–92.

    Google Scholar 

  30. L.T. Shiang and CM. Wayman:Metallography, 1988, vol. 21, pp. 425–50.

    Article  CAS  Google Scholar 

  31. S. Floreen:Trans. Q. ASM, 1964, vol. 57, pp. 38–47.

    CAS  Google Scholar 

  32. J.W. Christian:Strengthening Methods in Crystals, A. Kelly and R. Nicholson, eds., Elsevier Publishing Co., Amsterdam, 1971, pp. 261–325.

    Google Scholar 

  33. B. Lerch and V. Gerold:Acta Metall., 1985, vol. 33, pp. 1709–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viswanathan, U.K., Dey, G.K. & Asundi, M.K. Precipitation Hardening in 350 Grade Maraging Steel. Metall Trans A 24, 2429–2442 (1993). https://doi.org/10.1007/BF02646522

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646522

Keywords

Navigation