Skip to main content
Log in

Kinetics of pearlite spheroidizations

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A study of the kinetics of pearlite spheroidization under static annealing conditions was carried out in two materials — AISI 1080 steel and pure Fe-C alloy. A stereological “shape factor”,F, defined asF =S v p/3• Km, was introduced for the kinetic study. The significance of this shape factor in relation to the geometrical characters of lamellar structures is discussed. For constant temperature a linear relation betweenF and the logarithm of time was obtained. Analysis of the time and temperature dependencies for a constant shape factor gave an activation energy of 70 kcal/mole for AISI 1080 steel and 58 kcal/mole for Fe-C alloy which indicates that volume diffusion of Fe in ferrite is the rate-controlling mechanism. The modified fault migration theory, which was developed from the mechanism study of this research, was applied to predict the kinetics of the pearlite spheroidization. For both the AISI 1080 and the Fe-C alloy experimental results have a good match with the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Harrigan and O. D. Sherby:Mater. Sci. Eng., 1971, vol. 7, pp. 177–89.

    Article  CAS  Google Scholar 

  2. J. Kostler:Arch Eisenhüttenwes,. 1975, vol. 46, pp. 229–33.

    Google Scholar 

  3. S. Chattopadhyay and C.M. Sellars:Acta Metall., 1982, vol. 30, pp. 157–70.

    Article  CAS  Google Scholar 

  4. S. Chattopadhyay and C.M. Sellars:Metallog., 1977, vol. 10, pp. 89–105.

    Article  CAS  Google Scholar 

  5. E. A. Chojnowski and W. J. McG. Tegart:Metal Sci. J., 1968, vol. 2, pp. 14–18.

    Article  CAS  Google Scholar 

  6. G. W. Greenwood:Acta Metall., 1956, vol. 4, pp. 243–48.

    Article  CAS  Google Scholar 

  7. I.W. Lifshitz and V.V. Sloyozov:J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  8. C. Wagner: Z.Electrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  9. R.T. DeHoff and C.V. Iswaran:Metall. Trans. A, 1982, vol. 13A, pp. 1389–95.

    Google Scholar 

  10. R.T. DeHoff:Trans. AIME, 1967, vol. 239, pp. 617–21.

    CAS  Google Scholar 

  11. A.M. Gokhale, C.V. Iswaran, and R.T. DeHoff:Metall. Trans. A, 1980, vol. 11A, pp. 1377–83.

    CAS  Google Scholar 

  12. R. T. DeHoff:Acta Metall., 1984, vol. 43, pp. 43–47.

    Google Scholar 

  13. Y. L. Tian and R. W. Kraft:Metall. Trans. A, 1987, vol. 18A, pp. 1403–14.

    CAS  Google Scholar 

  14. Y. L. Tian: Ph.D. Dissertation, Lehigh University, Bethlehem, PA, 1985.

    Google Scholar 

  15. R. T. DeHoff and F. N. Rhines:Quantitative Metallography, McGraw-Hill, New York, NY, 1968.

    Google Scholar 

  16. E. E. Underwood:Quantitative Stereology, Addison-Wesley, Reading, MA, 1970.

    Google Scholar 

  17. E. R. Weibel:Stereological Methods, Acad. Pr., 1980, vol. 1.

  18. H.J.C. Gundersen:J. Microscop., 1977, vol. 111, pp. 219–23.

    Google Scholar 

  19. W. A. Mertz:Mikroscopie, 1967, vol. 22, p. 132.

    Google Scholar 

  20. E. E. Underwood:Microscope, 1976, vol. 24, pp. 49–64.

    Google Scholar 

  21. E. E. Underwood:Proc. 4th Int. Cong. Stereology, 1976, pp. 96-97.

  22. R. T. DeHoff:Trans. AIME, 1964, vol. 230, pp. 764–69.

    Google Scholar 

  23. H.F. Fishmeister: Z.Metallkde., 1974, vol. 65, pp. 558–62.

    Google Scholar 

  24. H.F. Fishmeister:Powd. Met. Int., 1975, vol. 7, pp. 178–88.

    Google Scholar 

  25. A. Gallo:Powd. Met. Int., 1984, vol. 16, pp. 78–80.

    Google Scholar 

  26. R.T. DeHoff:Metall. Trans. A, 1979, vol. 10A, pp. 1948–49.

    Google Scholar 

  27. J.H. Holloman and L.D. Jaffe:Trans. AIME, 1945, vol. 162, pp. 223–49.

    Google Scholar 

  28. F.R. Larson and J. Miller:Trans. ASME, 1952, pp. 765-75.

  29. D.W. James and G. M. Leak:Phil. Mag., 1965, vol. 12, pp. 491–503.

    CAS  Google Scholar 

  30. D. W. James and G. M. Leak:Phil. Mag., 1966, vol. 14, pp. 701–13.

    CAS  Google Scholar 

  31. C. Lymonie: Ph.D. Thesis, Presented to Faculté des Science de L'Université de Paris, 1959.

  32. C.A. Wert:Phy. Rev., 1950, vol. 79, pp. 601–05.

    Article  CAS  Google Scholar 

  33. R.W. K. Honeycombe:Steels, Microstructure and Properties, Edward Arnold, 1981.

  34. Y. G. Nakagawa, G. C. Weatherly, and E. Ho:Trans. JIM, 1974, vol. 15, pp. 114–20.

    CAS  Google Scholar 

  35. P. Moon and D.E. Spencer:Field Theory Handbook, 2nd ed., Springer Verlag, 1971.

  36. G. P. Airey, T. A. Hughes, and R. F. Mehl:Trans. AIME, 1968, vol. 242, pp. 1853–63.

    Google Scholar 

  37. R.A. Oriani:Acta Metall., 1964, vol. 12, pp. 1399–1409.

    Article  CAS  Google Scholar 

  38. K.M. Vedula and R. W. Heckel:Metall. Trans., 1970, vol. 1, pp. 9–18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y.L., Kraft, R.W. Kinetics of pearlite spheroidizations. Metall Trans A 18, 1359–1369 (1987). https://doi.org/10.1007/BF02646650

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646650

Keywords

Navigation