Skip to main content
Log in

Creep and ductility in an Al-Cu solid-solution alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

High-temperature creep was investigated in an Al-3 wt pct Cu alloy at temperatures in the range of 773 to 853 K and at a normalized shear stress range extending from 10-5 to 7 × 10-4. The results show the presence of three distinct regions. In region I (low stresses), the stress exponent is 4.5 and the activation energy is 155 kJ/mole. In region II (intermediate stresses), the stress exponent is 3.2 and the activation energy is 151 kJ/mole. In region III (high stresses), the stress exponent is 4.5 and the activation energy is 205 kJ/mole. Creep curves obtained in the three regions exhibit a normal primary stage, but the extent of the stage is less pronounced in region II than in regions I and III. The creep characteristics in regions I and II, along with the values of the transition stresses between the two regions, are in conformity with the prediction of the deformation criterion for solid-solution alloys. While the advent of region III (high stresses) correlates well with dislocation breakaway from a solute-atom atmosphere, the creep characteristics in this region are not entirely consistent with any of the existing high-stress creep mechanisms. The plot of elongation to fracturevs initial strain rate at 853 K exhibits two peaks at strain rates of 1 × 10-4 and 6 × 10-4 s-1. The first peak (1 × 10-4 s-1) is attributed to the variation of the stress exponent for creep in the alloy with strain rate, and the second peak (6 × 10-4 s-1) appears to reflect the effect of solute drag on dislocation velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. D. Sherby and P. M. Burke:Prog. Mater. Sci., 1968, vol. 13, pp. 325–90.

    Article  Google Scholar 

  2. J. E. Bird, A. K. Mukherjee, and J. E. Dorn:Quantitative Relation Between Properties and Microstructures, D. G. Brandon and A. Rosen, eds., Israel Universities Press, Jerusalem, 1969, pp. 255–342.

    Google Scholar 

  3. W. R. Cannon and O. D. Sherby:Metall. Trans., 1970, vol. 1, pp. 1030–32.

    Google Scholar 

  4. J. Weertman:Trans. Amer. Inst. Mining Eng., 1960, vol. 218, pp. 207–18.

    Google Scholar 

  5. F. A. Mohamed and T. G. Langdon:Acta Metall., 1974, vol. 22, pp. 779–88.

    Article  Google Scholar 

  6. K. L. Murty, F. A. Mohamed, and J. E. Dorn:Acta Metall., 1972, vol. 20, pp. 1009–18.

    Article  Google Scholar 

  7. F. A. Mohamed and T. G. Langdon:Metall. Trans. A, 1975, vol. 6A, pp. 927–28.

    Article  Google Scholar 

  8. F. A. Mohamed:Metall. Trans. A, 1978, vol. 9A, pp. 1013–15.

    Article  Google Scholar 

  9. P. Yavari, F. A. Mohamed, and T. G. Langdon:Acta Metall., 1981, vol. 29, pp. 1495–1507.

    Article  Google Scholar 

  10. M. S. Soliman and F. A. Mohamed:Mater. Sci. Eng., 1982, vol. 55, pp. 111–19.

    Article  Google Scholar 

  11. P. Yavari and T.G. Langdon:Ada Metall., 1982, vol. 30, pp. 2181–96.

    Article  Google Scholar 

  12. M. S. Soliman and F. A. Mohamed:Metall. Trans. A. 1984, vol. 15A, pp. 1893–1904.

    Article  Google Scholar 

  13. M. A. Burke andN. D. Nix:Acta Metall., 1975, vol. 23,pp. 793–98.

    Article  Google Scholar 

  14. A. K. Ghosh and R. A. Ayres:Metall. Trans. A, 1976, vol. 7A, pp. 1589–91.

    Article  Google Scholar 

  15. F. A. Mohamed:Scripta Metall., 1979, vol. 13, pp. 87–90.

    Article  Google Scholar 

  16. F. A. Nichols:Acta Metall., 1980, vol. 27, pp. 663–73.

    Article  Google Scholar 

  17. I. H. Lin, J. P. Hirth, and E. W. Hart:Acta Metall., 1981, vol. 29, pp. 819–27.

    Article  Google Scholar 

  18. M. S. Mostafa and F. A. Mohamed:Metall. Trans. A, 1986, vol. 17A, pp. 365–66.

    Article  Google Scholar 

  19. F. A. Mohamed, K. L. Murty, and J. W. Morris, Jr.:Metall. Trans., 1973, vol. 4, pp. 935–40.

    Article  Google Scholar 

  20. H. Ishikawa, F. A. Mohamed, and T. G. Langdon:Phil. Mag., 1975, vol. 32, pp. 1269–71.

    Article  Google Scholar 

  21. F. A. Mohamed, M. M. I. Ahmed, and T. G. Langdon:Metall. Trans. A, 1977, vol. 8A, pp. 933–38.

    Article  Google Scholar 

  22. B. S. Chin, W. D. Nix, and G. M. Pound:Metall. Trans. A, 1977, vol. 8A, pp. 1523–30.

    Article  Google Scholar 

  23. H. I. Huang, O. D. Sherby, and J. E. Dorn:Trans. AIME, 1956, vol. 206, pp. 1385–88.

    Google Scholar 

  24. A. K. Mukherjee, J. E. Bird, and J. E. Dorn:Trans. ASM, 1969, vol. 62, pp. 155–79.

    Google Scholar 

  25. J. Weertman:J. Appl. Phys., 1955, vol. 26, pp. 1213–17.

    Article  Google Scholar 

  26. J. Weertman:J. Mech. Phys. Solids, 1956, vol. 4, pp. 230–34.

    Article  Google Scholar 

  27. 1. S. Servi andN. J. Grant:Trans. AIME, 1951, vol. 191, pp. 909–16.

    Google Scholar 

  28. P. C. Gallagher:Metall. Trans., 1970, vol. 1, pp. 2429–61.

    Google Scholar 

  29. F. A. Mohamed and T. G. Langdon:J. Appl. Phys., 1974, vol. 45, pp. 1965–67.

    Article  Google Scholar 

  30. A. S. Argon and W. C. Moffatt:Acta Metall., 1981, vol 29 pp. 293–99.

    Article  Google Scholar 

  31. A. S. Argon and S. Takeuchi:Acta Metall., 1981, vol. 29, pp. 1877–84.

    Article  Google Scholar 

  32. V. C. Kannan and G. Thomas:J. Appl. Phys., 1966, vol. 37, pp. 2363–70.

    Article  Google Scholar 

  33. A. Goel, T. J. Ginter, and F. A. Mohamed:Metall. Trans. A, 1983, vol. 14A, pp. 2309–18.

    Article  Google Scholar 

  34. J. Weertman:J. Appl. Phys., 1957, vol. 28, pp. 1185–89.

    Article  Google Scholar 

  35. A. H. Cottrell and M. A. Jaswon:Proc. R. Soc. London, Ser. A, 1949, vol. 199, pp. 104–14.

    Article  Google Scholar 

  36. J. C. Fisher:Acta Metall., 1954, vol. 2, pp. 9–10.

    Article  Google Scholar 

  37. H. Suzuki:Sci. Rep. Research Inst. Tohoku Univ., 1952, vol. A4, pp. 455–63.

    Google Scholar 

  38. J. Snoek:Physica, 1942, vol. 9, pp. 862–64.

    Article  Google Scholar 

  39. F. A. Mohamed:Mater. Sci. Eng., 1983, vol. 61, pp. 149–65.

    Article  Google Scholar 

  40. N. L. Peterson and S. J. Rothman:Phys. Rev., 1970, vol. Bl, pp. 3264–73.

    Article  Google Scholar 

  41. S. H. Hong and J. Weertman:Acta Metall., 1986, vol. 34, pp. 743–51.

    Article  Google Scholar 

  42. H. W. King:J. Mater. Sci., 1966, vol. 1, pp. 79–90.

    Article  Google Scholar 

  43. K. L. Murty:Scripta Metall., 1973, vol. 7, pp. 899–904.

    Article  Google Scholar 

  44. H. Oikawa, K. Sugawara, and S. Karashima:Trans. Jap. Inst. Metals, 1978, vol. 19, pp. 611–16.

    Article  Google Scholar 

  45. S. L. Robinson and O. D. Sherby:Acta Metall., 1969, vol. 17, pp. 109–25.

    Article  Google Scholar 

  46. F. A. Mohamed:Mater. Sci. Eng., 1979. vol. 38, pp. 73–80.

    Article  Google Scholar 

  47. A. S. Keh, Y. Nakada, and W. C. Leslie: Dislocation Dynamics, A. R. Rosenfield, G. T. Hahn, A. L. Bernent, Jr., and R. I. Jaffee, eds., McGraw-Hill, New York, NY. 1968, pp. 381–408.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhury, P.K., Mohamed, F.A. Creep and ductility in an Al-Cu solid-solution alloy. Metall Trans A 18, 2105–2114 (1987). https://doi.org/10.1007/BF02647082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647082

Keywords

Navigation