Skip to main content
Log in

The effect of phase continuity on the fatigue and crack closure behavior of a dual-phase steel

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of phase continuity on the low cycle fatigue and fatigue crack growth behavior of a Fe-C-Mn dual-phase steel has been investigated. Two microstructures, one consisting of continuous ferrite and the other continuous martensite, were examined. Although there was no difference in the low cycle fatigue lives between the two microstructures, the continuous martensite structure exhibited an extremely high fatigue threshold value of 20 MPa m1/2, compared to 16 MPa m1/2 for the continuous ferrite microstructure. A major effect of phase continuity has also been found in the crack closure levels during fatigue crack propagation studied over three decades of crack growth rates. The continuous martensite microstructure exhibited much higher closure levels due to the martensite constraining the plastic deformation in the ferrite and bearing a larger portion of the applied cyclic load. This effect is similar to the extrinsic toughening phenomenon cited in the literature. After accounting for the closure levels the intrinsic or effective fatigue crack growth rates are similar for the two microstructures. These intrinsic thresholds are predicted by employing experimentally obtained low cycle fatigue parameters and the ferrite grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Suzuki and A. J. McEvily:Metall. Trans. A, 1979, vol 10A pp. 475–81.

    Article  CAS  Google Scholar 

  2. K. Minakawa, Y. Matsuo, and A. J. McEvily:Metall. Trans. A, 1982, vol. 13A, pp. 439–45.

    Article  CAS  Google Scholar 

  3. J. A. Wasynczuk, R. O. Ritchie, and G. Thomas:Mat. Sci. & Eng, 1984, vol. 62, pp. 79–92.

    Article  CAS  Google Scholar 

  4. V. B. Dutta, S. Suresh, and R. O. Ritchie:Metall. Trans. A, 1984 vol. 15A, pp. 1193–1207.

    Article  CAS  Google Scholar 

  5. N. J. Kim and G. Thomas:Metall. Trans. A, 1981, vol 12A pp. 483–89.

    Article  Google Scholar 

  6. T. Ishihara:J. of Mat. Sci., 1983, vol. 18, pp. 103–08.

    Article  CAS  Google Scholar 

  7. J. D. Lavender and F. W. Jones:JISI, September 1949, pp. 14–17.

  8. M. Hillert and L.-I. Staffanson:Acta Chem. Scand., 1970, vol. 24 pp. 3618–26.

    Article  CAS  Google Scholar 

  9. R. O. Ritchie:International Metals Review, 1979, vol 24 pp. 205–30.

    CAS  Google Scholar 

  10. D. Bryant:Micron and Microscopica Acta, 1986, vol. 17, pp. 237–41.

    Article  Google Scholar 

  11. S. Suresh:Metall. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Article  Google Scholar 

  12. G. Birkbeck, E. A. Inckle, and G. W. J. Waldron:J. Mat. Sci., 1971, vol. 6, pp. 319–23.

    Article  CAS  Google Scholar 

  13. C. J. Beevers:Fatigue Thresholds, J. Backlund, A. F. Blom, and C.J. Beevers, eds., EMAS Ltd., Warley, U.K., 1982, vol. 1, pp. 257–69.

    Google Scholar 

  14. R. O. Ritchie and W. Yu:Small Fatigue Cracks, R. O. Ritchie and J. Lankford, eds., AIME, 1986, pp. 167–89.

  15. K. Minakawa and A. J. McEvily:Scripta Metall., 1981, vol. 15, pp. 633–36.

    Article  Google Scholar 

  16. R. D. Carter, E. W. Lee, E. A. Starke, Jr., and C. J. Beevers:Metall. Trans. A, 1984, vol. 15A, pp. 555–63.

    Article  CAS  Google Scholar 

  17. K. V. Jata and E. A. Starke, Jr.:Metall. Trans. A, 1986, vol. 17A, pp. 1011–26.

    Article  CAS  Google Scholar 

  18. G. T. Gray, III, J. C. Williams, and A. W. Thompson:Metall. Trans. A, 1983, vol. 14A, pp. 421–33.

    Article  Google Scholar 

  19. C. Y. Yang and H. W. Liu:Fatigue Eng. Mat. and Struc, 1979, vol. 1, pp. 483–93.

    Article  CAS  Google Scholar 

  20. S. B. Chakrabortty:Fatigue Eng. Mat. and Struc., 1979, vol. 2, pp. 331–44.

    Article  CAS  Google Scholar 

  21. H. C. Heikkenen, E. A. Starke, Jr., and S. B. Chakrabortty:Scripta Metall., 1982, vol. 16, pp. 571–74.

    Article  CAS  Google Scholar 

  22. E. A. Starke, Jr., F. S. Lin, R. T. Chen, and H. C. Heikkenen:Fatigue Crack Growth Threshold Concepts, D. L. Davidson and S. Suresh, eds., TMS-AIME, Warrendale, PA, 1984, pp. 43–61.

    Google Scholar 

  23. S. Majumdar and J. Morrow:Fracture Toughness and Slow-Stable Cracking, ASTM STP 559, Philadelphia, PA, pp. 159–63.

  24. R. E. Sanders and E. A. Starke, Jr.:Thermomechanical Processing of Aluminum Alloys, J. G. Morris, ed., TMS-AIME, Warrendale, PA, 1979, pp. 50–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramage, R.M., Jata, K.V., Shiflet, G.J. et al. The effect of phase continuity on the fatigue and crack closure behavior of a dual-phase steel. Metall Trans A 18, 1291–1298 (1987). https://doi.org/10.1007/BF02647198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647198

Keywords

Navigation