Skip to main content
Log in

Influence of deformation-induced martensite on fatigue crack propagation in 304-type steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

This research reports an investigation into the influence of mechanically induced martensitic transformation on the rate of fatigue crack growth in 304-type austenitic stainless steels. Two steels of different composition, 304L and 304LN, were used to test the influence of composition; two test temperatures, 298 and 77 K, were used to study the influence of test temperature; and various load ratios were used to determine the influence of the mean stress. It was found thadecreasing the mechanical stability of the austenite by changing composition or lowering temperature reduces the fatigue crack growth rate and increases the threshold stress intensity for crack growth. However, this beneficial effect diminishes as the load ratio increases, even though increasing the load ratio increases the extent of the martensite transformation. Several mechanisms that may influence this behavior are discussed, including the perturbation of the crack tip stress field, crack deflection, work hardening, and the relative brittleness of the transformed material. The perturbation of the stress field seems to be the most important; by modifying previous models, we develop a quantitative analysis of the crack growth rate that provides a reasonable fit to the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Breedis and W.D. Robertson:Acta Metall., 1962, vol. 10, pp. 1077–88.

    Article  CAS  Google Scholar 

  2. H. Fiedler, B. Averbach, and M. Cohen:Trans. ASM, 1955, vol. 47, pp. 276–90.

    Google Scholar 

  3. R. Reed:Acta Metall., 1962, vol. 10, pp. 865–77.

    Article  CAS  Google Scholar 

  4. A.G. Pineau and R.M. Pelloux:Metall. Trans., 1974, vol. 5, pp. 1103–12.

    CAS  Google Scholar 

  5. C. Bathias and R.M. Pelloux:Metall. Trans., 1973, vol. 4, pp. 1265–73.

    CAS  Google Scholar 

  6. R.L. Tobler and R.P. Reed:J. Test. Eval., 1984, vol. 12 (6), pp. 364–70.

    Google Scholar 

  7. G. Schuster and C. Altstetter:Metall. Trans. A, 1983, vol. 14A, pp. 2077–84.

    CAS  Google Scholar 

  8. G. Schuster and C. Altstetter:Fatigue Mechanisms, ASTM STP 811, ASTM, Philadelphia, PA, 1983, pp. 445–63.

    Google Scholar 

  9. G.R. Chanani, Stephen D. Antolovich, and W.W. Gerberich:Metall. Trans., 1972, vol. 3, pp. 2661–72.

    CAS  Google Scholar 

  10. E. Hornbogen:Acta Metall., 1978, vol. 26, pp. 147–52.

    Article  CAS  Google Scholar 

  11. A.J. McEvily, W. Zagrany, and J. Gonzalez: inBasic Mechanisms in Fatigue of Metals, P. Lukas and J. Polak, eds., Elsevier, New York, NY, 1988, pp. 271–79.

    Google Scholar 

  12. G.M. Chang: M.S. Thesis, University of California, Berkeley, CA, 1983.

  13. G.H. Eichelman and F.C. Hull:Trans. ASM, 1953, vol. 45, pp. 77–104.

    Google Scholar 

  14. I. Williams, R.G. Williams, and R.C. Capellaro:Proc. 6th Int. Cryogenic Engineering Conf., IPC Science and Technology Press, Guildford, Surrey, England, 1976, pp. 337–41.

    Google Scholar 

  15. Annual Book of ASTM Standards, E 647-83, ASTM, Philadelphia, PA, 1983, pp. 739–59.

  16. Metals Handbook, 9th ed., ASM, Metals Park, OH, 1985, vol. 8, pp. 386–402.

  17. M.D. Halliday and C.J. Beevers: inThe Measurement of Crack Length and Shape During Fracture and Fatigue, C.J. Beevers, ed., Engineering Materials Advisory Services Ltd., West Midlands, United Kingdom, 1981, pp. 85–112.

    Google Scholar 

  18. T.C. Lindley: inSubcritical Crack Growth due to Fatigue, Stress Corrosion and Creep, L.H. Larsson, ed., Elsevier Applied Science, New York, NY, 1981, pp. 167–213.

    Google Scholar 

  19. R.O. Ritchie and W. Yu: inSmall Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 167–89.

    Google Scholar 

  20. W.F. Deans and C.E. Richards:J. Test. Eval., 1979, vol. 7, pp. 147–54.

    Article  CAS  Google Scholar 

  21. Metals Handbook, 9th ed., ASM, Metals Park, OH, 1985, vol. 9, pp. 63–70.

  22. R.J. Gray:Revealing Ferromagnetic Microstructures with Ferrofluids, ORNL-TM-368, Oak Ridge National Laboratory, Oak Ridge, TN, Mar. 1972.

    Google Scholar 

  23. T.H. Coleman and D.R.F. West:Met. Technol., Feb. 1976, pp. 49–53.

  24. B. Yahiaoui and P. Petriquin:Note Technique RAM (73) 567, Division de Metallurgie et D’Etude des Combustibles Nucléaires, Centre d’Etudes Nucléaires de Saclay, Saclay, France, Dec. 1973.

    Google Scholar 

  25. L.A. James:Fatigue Crack Growth Measurement and Data Analysis, ASTM STP 738, ASTM, Philadelphia, PA, 1981, pp. 45–57.

    Google Scholar 

  26. J.L. Bernard and G.S. Slama:Nucl. Technol., 1982, vol. 59 (1), pp. 136–47.

    Google Scholar 

  27. L.A. James: Report HEDL-TME 75-20, Westinghouse Hanford Company, Richland, WA, Feb. 1975.

  28. S. Suresh and R.O. Ritchie: inFatigue Crack Growth Threshold: Concepts, D.L. Davidson and S. Suresh, eds., TMS-AIME, Warrendale, PA, 1984, pp. 227–61.

    Google Scholar 

  29. P.L. Mangonon, Jr.: Ph.D. Thesis, University of California, Berkeley, CA, 1968.

    Google Scholar 

  30. R.M. McMeeking and A.G. Evans:J. Am. Ceram. Soc, 1982, vol. 65 (5), pp. 242–46.

    Article  Google Scholar 

  31. B. Budiansky, J.W. Hutchinson, and J.C. Lambropoulos:Int. J. Solids Struct., 1983, vol. 19 (4), pp. 337–55.

    Article  Google Scholar 

  32. J.C. Lambropoulos:Int. J. Solids Struct., 1986, vol. 22 (10), pp. 1083–1115.

    Article  Google Scholar 

  33. N.I. Muskhelishvili:Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff Ltd., Groningen, The Netherlands, 1953, pp. 225–27.

    Google Scholar 

  34. H. Tada, P.C. Paris, and G.R. Irwin:The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, PA, 1973, pp. F.1-F16 and C.1-C20.

    Google Scholar 

  35. J.D. Eshelby:Proc. R. Soc. London, 1957, vol. A241, pp. 376–96.

    Google Scholar 

  36. P.C. Paris, R.M. McMeeking, and H. Tada:Cracks and Fractures, ASTM STP 601, ASTM, Philadelphia, PA, 1976, pp. 471–89.

    Google Scholar 

  37. S. Chen, A.G. Khachaturyan, and J.W. Morris, Jr.:Proc. ICOMAT 1979, W.S. Owen, ed., Massachusetts Institute of Technology, Cambridge, MA, 1980, pp. 94–99.

    Google Scholar 

  38. K. Katagiri, M. Tsuji, T. Okada, K. Ohji, R. Ogawa, G.M. Chang, and J.W. Morris, Jr.:Adv. Cryog. Eng., 1989, vol. 36, pp. 1225–32.

    Google Scholar 

  39. R.O. Ritchie: Class Notes of MSE 212, available in the Engineering Library, University of California, Berkeley, CA, 1987.

  40. Dr. K. Chang: General Electric Company, Fairfield, CT, and Dr. R. Sawtell, Aluminum Company of America, Alcoa Center, private communication, 1989.

  41. S. Suresh:Metall. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Google Scholar 

  42. A.A. Khrapkov:Int. J. Fract. Mech., 1971, vol. 7, pp. 373–82.

    Google Scholar 

  43. B.A. Bilby, G.E. Cardew, and I.C. Howard: inFracture 1977, D.M.R. Taplin, ed., University of Waterloo Press, PO, Canada, 1977, vol. 3, pp. 197–200.

    Google Scholar 

  44. B. Cotterell and J.R. Rice:Int. J. Fract., 1980, vol. 16, pp. 155–69.

    Article  Google Scholar 

  45. P.C. Paris and G.C. Sih:Stress Analysis of Cracks, ASTM STP 381, ASTM, Philadelphia, PA, 1965, pp. 30–40.

    Google Scholar 

  46. A.J. McEvily:Fatigue Mechanisms, ASTM STP 811, ASTM, Philadelphia, PA, 1983, pp. 283–312.

    Google Scholar 

  47. J.R. Rice and G.F. Rosengren:J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–12.

    Article  Google Scholar 

  48. J.W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  49. A.G. Evans and R.M. Cannon:Acta Metall., 1986, vol. 34, pp. 761–800.

    Article  CAS  Google Scholar 

  50. B.D. Marshall, A.G. Evans, and M. Drory: inFracture Mechanics of Ceramics, R.C. Bradt, A.G. Evans, D.P.H. Hasselman, and F.F. Lange, eds., Plenum Press, New York, NY, 1983, vol. 6, pp. 289–307.

    Google Scholar 

  51. M. Ruhle: University of California at Santa Barbara, Santa Barbara, CA, unpublished research, 1983.

  52. A.G. Evans, Z.B. Ahmad, D.G. Gilbert, and P.W.R. Beaumont:Acta Metall., 1986, vol. 34, pp. 79–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, Z., Morris, J.W. Influence of deformation-induced martensite on fatigue crack propagation in 304-type steels. Metall Trans A 21, 3137–3152 (1990). https://doi.org/10.1007/BF02647310

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647310

Keywords

Navigation