Skip to main content
Log in

Prediction of sintered density for bimodal powder mixtures

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Bimodal mixtures improve the green density of powder systems and are used in processes such as slip casting and powder injection molding. The packing density can be predicted with reasonable accuracy, but there is great uncertainty in the sintered density of a bimodal mixture. The large/small composition effect on packing density and sintered density is treated using the specific volume. For a given composition, the packing density is accurately predicted when four parameters are known: particle size ratio, packing density of the small powder, packing density of the large powder, and mixture homogeneity. Prediction of the sintered density is possible from knowledge of the densification of the large and small powders and mixture homogeneity. The model is applied to bimodal mixtures of molybdenum, stainless steel, iron, and alumina. Certain criteria must be satisfied by the constituent powders for a bimodal mixture to exhibit the highest sintered density. In many situations, the highest sintered density occurs at the 100 pct small powder composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Furnas:Ind. Eng. Chem., 1931, vol. 23, pp. 1052–58.

    Article  CAS  Google Scholar 

  2. R.M. German:Particle Packing Characteristics, Metal Powder Industries Federation, Princeton, NJ, 1989, pp. 135–80.

    Google Scholar 

  3. R.L. Coble:J. Am. Ceram. Soc, 1973, vol. 56, pp. 461–66.

    Article  CAS  Google Scholar 

  4. F.F. Lange:J. Am. Ceram. Soc, 1984, vol. 67, pp. 83–89.

    Article  CAS  Google Scholar 

  5. G.Y. Onoda: inCeramic Microstructures ’76, R.M. Fulrath and J.A. Pask, eds., Westview Press, Boulder, CO, 1977, pp. 163–81.

    Google Scholar 

  6. A.E.R. Westman and H.R. Hugill:J. Am. Ceram. Soc, 1930, vol. 13, pp. 767–79.

    Article  CAS  Google Scholar 

  7. K. Ridgway and K.J. Tarbuck:Chem. Process Eng., 1968, vol. 49, pp. 103–05.

    CAS  Google Scholar 

  8. N. Epstein and M.J. Young:Nature, 1962, vol. 196, pp. 885–86.

    Article  CAS  Google Scholar 

  9. S. Yerazunis, S.W. Cornell, and B. Wintner:Nature, 1965, vol. 207, pp. 835–37.

    Article  Google Scholar 

  10. R.K. McGeary:J. Am. Ceram. Soc, 1961, vol. 44, pp. 513–22.

    Article  CAS  Google Scholar 

  11. J. Ayer and F.E. Soppet:J. Am. Ceram. Soc, 1965, vol. 48, pp. 180–83.

    Article  CAS  Google Scholar 

  12. D.I. Lee:J. Paint Technol., 1970, vol. 42, pp. 579–87.

    CAS  Google Scholar 

  13. H.J. Fraser:J. Geol., 1935, vol. 43, pp. 910–1010.

    Article  CAS  Google Scholar 

  14. J.V. Milewski: inHandbook of Reinforcements for Plastics, J.V. Milewski and H.S. Katz, eds., Van Nostrand Reinhold, New York, NY, 1987, pp. 14–33.

    Google Scholar 

  15. Y.V. Maksimov:Colloid J. USSR, 1986, vol. 48, pp. 693–94.

    Google Scholar 

  16. J. Eastwood, E.J.P. Matzen, M.J. Young, and N. Epstein:Br. Chem. Eng., 1969, vol. 14, pp. 1542–45.

    CAS  Google Scholar 

  17. A.B. Yu and N. Standish:Powder Technol., 1987, vol. 52, pp. 233–41.

    Article  CAS  Google Scholar 

  18. W. Gray:The Packing of Solid Particles, Chapman and Hall, London, 1968.

    Google Scholar 

  19. G.Y. Onoda and G.L. Messing: inProcessing of Crystalline Ce- ramics, H. Palmour, R.F. Davis, and T.M. Hare, eds., Plenum Press, New York, NY, 1978, pp. 99–111.

    Google Scholar 

  20. G.L. Messing and G.Y. Onoda:J. Am. Ceram. Soc, 1978, vol. 61, pp. 1–5.

    Article  Google Scholar 

  21. S.T. Lin: Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1991.

    Google Scholar 

  22. M.J. O’Hara and I.B. Cutler:Proc Br. Ceram. Soc, 1969, no. 12, pp. 145–54.

  23. J.P. Smith and G.L. Messing:J. Am. Ceram. Soc, 1984, vol. 67, pp. 238–42.

    Article  CAS  Google Scholar 

  24. R. Raj and R.K. Bordia:Acta Metall., 1984, vol. 32, pp. 1003–19.

    Article  Google Scholar 

  25. C.H. Hsueh:J. Am. Ceram. Soc, 1988, vol. 71, pp. C314-C315.

    CAS  Google Scholar 

  26. F.W. Dynys and J.W. Halloran:J. Am. Ceram. Soc, 1984, vol. 67, pp. 596–601.

    Article  CAS  Google Scholar 

  27. C.H. Hsueh, A.G. Evans, R.M. Cannon, and R.J. Brook:Acta Metall., 1986, vol. 34, pp. 927–36.

    Article  CAS  Google Scholar 

  28. B.R. Patterson, V.D. Parkhe, and J. A. Griffin: inSintering ’85, G.C. Kuczynski, D.P. Uskokovic, H. Palmour, and M.M. Ristic, eds., Plenum Press, New York, NY, 1987, pp. 43–51.

    Google Scholar 

  29. G.W. Scherer:J. Am. Ceram. Soc, 1987, vol. 70, pp. 766–74.

    Article  Google Scholar 

  30. C.H. Hsueh:J. Am. Ceram. Soc, 1988, vol. 71, pp. C442-C444.

    Article  CAS  Google Scholar 

  31. C.H. Hsueh, A.G. Evans, and R.M. McMeeking:J. Am. Ceram. Soc, 1986, vol. 69, pp. C64-C66.

    CAS  Google Scholar 

  32. B. Kellett and F.F. Lange:J. Am. Ceram. Soc, 1984, vol. 67, pp. 369–71.

    Article  CAS  Google Scholar 

  33. L.C. DeJonghe, M.N. Rahaman, and C.H. Hsueh:Acta Metall., 1986, vol. 34, pp. 1467–71.

    Article  CAS  Google Scholar 

  34. M.N. Rahaman and L.C. DeJonghe:J. Am. Ceram. Soc, 1987, vol. 70, pp. C348-C351.

    Article  CAS  Google Scholar 

  35. F.F. Lange and M. Metcalf:J. Am. Ceram. Soc, 1983, vol. 66, pp. 398–406.

    Article  CAS  Google Scholar 

  36. F.F. Lange, B.I. Davis, and I.A. Aksay:J. Am. Ceram. Soc, 1983, vol. 66, pp. 407–08.

    Article  CAS  Google Scholar 

  37. R.M. German:Powder Metallurgy Science, Metal Powder Industries Federation, Princeton, NJ, 1984, p. 159.

    Google Scholar 

  38. A.R. Poster, C.T. Waldo, and H.H. Hausner:Prog. Powder Metall., 1960, vol. 16, pp. 56–70.

    Google Scholar 

  39. M. Bulger: M.S. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1990.

    Google Scholar 

  40. J. Takekawa:J. Jpn Soc. Powder Metall., 1988, vol. 35, pp. 641–45.

    CAS  Google Scholar 

  41. R.M. German:Powder Injection Molding, Metal Powder Industries Federation, Princeton, NJ, 1990.

    Google Scholar 

  42. P.F. Murley and R.M. German: inAdvances in Powder Metal- lurgy, T.G. Gasbarre and W.F. Jandeska, eds., Metal Powder Industries Federation, Princeton, NJ, 1989, vol. 3, pp. 103–20.

    Google Scholar 

  43. R.T. Fox, D. Lee, M.K. Bulger, and R.M. German: inAdvances in Powder Metallurgy, E.R. Andreotti and P.J. McGeehan, eds., Metal Powder Industries Federation, Princeton, NJ, 1990, vol. 3, pp. 359–73.

    Google Scholar 

  44. H.E. Amaya and J. St. Pierre: inModern Developments in Pow- der Metallurgy, P.U. Gummeson and D.A. Gustafson, eds., Metal Powder Industries Federation, Princeton, NJ, 1988, vol. 18, pp. 323–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

German, R.M. Prediction of sintered density for bimodal powder mixtures. Metall Trans A 23, 1455–1465 (1992). https://doi.org/10.1007/BF02647329

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647329

Keywords

Navigation