Skip to main content
Log in

Microstructure and creep properties of dispersion-strengthened aluminum alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The mechanical properties of dispersion-strengthened aluminum alloys, with various dispersoid types, volume fractions, and grain structures, were investigated in conjunction with systematic microstructural examinations. New theoretical concepts, based on thermally activated dislocation detachment from dispersoid particles, were used to analyze the creep behavior. A particularly strong dispersoid-dislocation interaction was identified as reason for the excellent creep properties of carbide dispersion-strengthened aluminum. Oxide particles (Al2O3,MgO) seem to exert a weaker interaction force and are therefore less efficient strengtheners. Although fine crystalline in the as-extruded condition, all alloys are remarkably resistant against diffusional creep. It is demonstrated that this behavior can be consistently understood by extending the concept developed for the interaction between bulk dislocations and dispersoids to grain boundary dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Irmann:Tech. Rundsch., 1949, vol. 41, pp. 19–20.

    Google Scholar 

  2. A. von Zeerleder:Z. Metallkd., 1950, vol. 41, pp. 228–31.

    Google Scholar 

  3. E.A. Bloch:Met. Rev., 1961, vol. 6, pp. 193–239.

    CAS  Google Scholar 

  4. F.V. Lenel, G.S. Ansell, and E.C. Nelson:Trans. AIME, 1957, vol. 209, pp. 117–21.

    Google Scholar 

  5. J.S. Benjamin and M.J. Bomford:Metall. Trans. A, 1977, vol. 8, pp. 1301–05.

    Article  Google Scholar 

  6. G. Jangg, F. Kutner, and G. Korb:Aluminum, 1975, vol. 51, pp. 641–45.

    CAS  Google Scholar 

  7. G. Jangg, F. Kutner, and G. Korb:Powder Metall. Int., 1977, vol. 9, pp. 24–26.

    CAS  Google Scholar 

  8. V. Arnold and J. Baumgarten:Powder Metall. Aerospace Mater., 1984, vol. 1, pp. 1–20.

    Google Scholar 

  9. K. Kucherova, A. Orlova, H. Oikawa, and J. Cadek:Mater. Sci. Eng. A, 1988, vol. 102, pp. 201–09.

    Article  Google Scholar 

  10. W.C. Oliver and W.D. Nix:Acta Metall., 1982, vol. 30, pp. 1335–47.

    Article  Google Scholar 

  11. J. Rosier:VDI Fortschr.-Ber., VDI-Verlag, Düsseldorf, 1988, vol. 5 (154), pp. 1–200.

    Google Scholar 

  12. R. Joos: Diploma Thesis, University of Stuttgart, Federal Republic of Germany, 1988.

    Google Scholar 

  13. L.J. Barker:Trans. ASM, 1949, vol. 42, pp. 347–51.

    Google Scholar 

  14. C. Zener as quoted by C.S. Smith:Trans. AIME, 1948, vol. 175, pp. 15–18.

    Google Scholar 

  15. R.F. Singer, W.C. Oliver, and W.D. Nix:Metall. Trans. A, 1980, vol. 11, pp. 1895–1901.

    Article  Google Scholar 

  16. M. Slesar, M. Besterci, G. Jangg, M. Miskovicova, and K. Pelikan:Z. Metallkd., 1988, vol. 79, pp. 56–63.

    CAS  Google Scholar 

  17. D. Altenpohl:Aluminum und Aluminumlegierungen, Springer- Verlag, Berlin, 1965, pp. 395–96.

    Google Scholar 

  18. Y.W. Kim, W.M. Griffith, and F.H. Froes: J. Met., 1985, pp. 27–33.

  19. G. Staniek:Aluminum, 1984, vol. 60, pp. 923–29.

    CAS  Google Scholar 

  20. G. Hass:Z. Anorg. Chem., 1947, vol. 254, pp. 96–106.

    Article  CAS  Google Scholar 

  21. N.A. McKinnon: Report SM205, Aeronautical Research Laboratories, Melbourne, Australia, 1953.

    Google Scholar 

  22. Alumina as a Ceramic Material, W.H. Gitzen, ed., The American Ceramic Society, Inc., Columbus, OH, 1970, pp. 14–35.

    Google Scholar 

  23. W. Kleber:Einfiihrung in die Kristallographic, VEB Verlag Technik, Berlin, 1958, p. 176.

    Google Scholar 

  24. M. von Stackelberg and E. Schnorrenberg:Z. Phys. Chem. B, 1934, vol. 27, pp. 37–49.

    Google Scholar 

  25. J.-J. Valencia, C. McCullough, J. Rosier, C.G. Levi, and R. Mehrabian: inSolidification of Metal Matrix Composites, P. Rohatgi, ed., TMS, Warrendale, PA, 1990, pp. 133–50.

    Google Scholar 

  26. N. Hansen:Trans. TMS-AIME, 1969, vol. 245, pp. 1305–12.

    CAS  Google Scholar 

  27. L.M. Brown and R.K. Ham: inStrengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Elsevier, Amsterdam, 1971, pp. 10–134.

    Google Scholar 

  28. R.S.W. Shewfelt and L.M. Brown:Phil. Mag., 1977, vol. 35, pp. 945–62.

    Article  CAS  Google Scholar 

  29. R. Lagneborg:Scripta Metall., 1973, vol. 7, pp. 605–13.

    Article  CAS  Google Scholar 

  30. J. Rosier and E. Arzt:Acta Metall., 1988, vol. 36, pp. 1043–51.

    Article  Google Scholar 

  31. W. Blum and B. Reppich: inCreep Behavior of Crystalline Solids, B. Wilshire and R.W. Evans, eds., Pineridge Press, Swansea, United Kingdom, 1985, pp. 83–135.

    Google Scholar 

  32. D.J. Srolovitz, R.A. Petkovic-Luton, and M.J. Luton:Acta Metall., 1983, vol. 31, pp. 2151–59.

    Article  CAS  Google Scholar 

  33. D.J. Srolovitz, M.J. Luton, R.A. Petkovic-Luton, D.M. Barnett, and W.D. Nix:Acta Metall., 1984, vol. 32, pp. 1079–88.

    Article  CAS  Google Scholar 

  34. E. Arzt and D.S. Wilkinson:Acta Metall., 1986, vol. 34, pp. 1893–98.

    Article  CAS  Google Scholar 

  35. J. Rosier and E. Arzt:Acta Metall. Mater., 1990, vol. 38, pp. 671–83.

    Article  Google Scholar 

  36. V.C. Nardone and J.K. Tien:Scripta Metall., 1983, vol. 17, pp. 467–72.

    Article  CAS  Google Scholar 

  37. J.H. Schröder and E. Arzt:Scripta Metall., 1985, vol. 19, pp. 1129–34.

    Article  Google Scholar 

  38. R.S. Herrick, J.R. Weertman, R. Petkovic-Luton, and M.J. Luton:Scripta Metall., 1988, vol. 22, pp. 1879–84.

    Article  CAS  Google Scholar 

  39. C. Herring:J. Appl. Phys., 1950, vol. 21, pp. 437–45.

    Article  Google Scholar 

  40. R.L. Coble:J. Appl. Phys., 1963, vol. 34, pp. 1679–84.

    Article  Google Scholar 

  41. N. Matsuda and K. Matsuura:Trans. Jpn. Inst. Met., 1953, vol. 28, pp. 392–405.

    Google Scholar 

  42. F.W. Crossman and M.F. Ashby:Acta Metall., 1975, vol. 23, pp. 425–40.

    Article  CAS  Google Scholar 

  43. E. Arzt, M.F. Ashby, and R.A. Verall:Acta Metall., 1983, vol. 31, pp. 1977–89,

    Article  CAS  Google Scholar 

  44. R. Timmins and E. Arzt: inStructural Applications of Mechanical Alloying, F.H. Froes and J.J. de Barbadillo, eds., ASM INTERNATIONAL, Metals Park, OH, 1990, pp. 67–77.

    Google Scholar 

  45. J. Rösier: Max-Planck-Institut für Metallforschung, Stuttgart, Germany, unpublished research, 1990.

  46. J.K. Gregory, J.C. Gibeling, and W.D. Nix:Metall. Trans. A, 1985, vol. 16, pp. 777–87.

    Google Scholar 

  47. B.A. Wilcox and A.H. Clauer:Acta Metall., 1972, vol. 20, pp. 743–57. 48. CRC Handbook of Chemistry and Physics, 65th ed., R.C. Weast, ed., CRC Press Inc., Boca Raton, FL, 1984, p. B-111.

    Article  CAS  Google Scholar 

  48. W. Köster:Z. Metallkd., 1948, vol. 39, pp. 1–9.

    Google Scholar 

  49. H.J. Frost and M.F. Ashby:Deformation Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982, pp. 20–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Project Group Leader, Max-Planck-Institut fur Metallforschung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rösler, J., Joos, R. & Arzt, E. Microstructure and creep properties of dispersion-strengthened aluminum alloys. Metall Trans A 23, 1521–1393 (1992). https://doi.org/10.1007/BF02647335

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647335

Keywords

Navigation