Skip to main content
Log in

Precipitation of silicon in aluminum-silicon: A calorimetric analysis of liquid-quenched and solid- quenched alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The precipitation of silicon in aluminum-silicon was investigated by calorimetric analysis of liquid-quenched (LQ; rapidly solidified) and solid-quenched (SQ: quenched after annealing the solid at elevated temperature) alloys. Nonisothermal annealing experiments (differential scanning calorimetry) were performed using specimens containing 1.3 to 19.1 gross at. pct Si. Initial and resulting microstructures were characterized by X-ray diffraction and transmission electron microscopy. Quantitative analysis showed that heat production in LQ alloys is due to precipitation of dissolved silicon and coarsening of silicon particles already present in the as-liquidquenched state, whereas heat production in SQ alloys can be ascribed solely to precipitation. The kinetics of silicon precipitation are affected by quenched-in excess vacancies in both LQ and SQ alloys. The grain-boundary area as a function of gross silicon content is discussed in terms of its effect on vacancy annihilation and the resulting effective activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.R. Anantharaman and C. Suryanarayana:Rapidly Solidified Metals, Trans. Tech. SA, Aedermannsdorf, Switzerland, 1987, pp. 1–4.

    Google Scholar 

  2. A. Bendijk, R. Delhez, L. Katgerman, Th.H. de Keijser, E.J. Mittemeijer, and N.M. van der Pers:J. Mater. Sci., 1980, vol. 15, pp. 2803–10.

    Article  CAS  Google Scholar 

  3. R. Delhez, Th.H. de Keijser, E.J. Mittemeijer, P. van Mourik, N.M. van der Pers, L. Katgerman, and W.E. Zalm:J. Mater. Sci., 1982, vol. 17, pp. 2887–94.

    Article  CAS  Google Scholar 

  4. P.H. Shingu, K. Kobayashi, K. Shimomura, and R. Ozaki:J. Jap. Inst. Metall., 1973, vol. 37, pp. 433–40.

    CAS  Google Scholar 

  5. P. van Mourik, Th.H. de Keijser, and E.J. Mittemeijer:Proc. 5th Int. Conf. Rap. Quenched Metals, S. Steeb and H. Warlimont, eds., Würzburg, F.R.G., Sept. 3-7, 1984, pp. 899-902.

  6. P. van Mourik, E.J. Mittemeijer, and Th.H. de Keijser:J. Mater. Sci., 1983, vol. 18, pp. 2706–20.

    Article  Google Scholar 

  7. P. van Mourik, Th.H. de Keijser, and E.J. Mittemeijer:Proc. 1st Int. Conf. on Rapidly Solidified Materials, San Diego, CA, Feb. 3–5, 1986, P.W. Lee and R.S. Carbonara, eds., ASM, Metals Park, OH, 1986, pp. 341-50.

  8. I. Yamauchi, I. Ohnaka, S. Kawamoto, and T. Fukusako:Trans. Jap. Inst. Metall., 1986, vol. 27, pp. 187–94.

    Google Scholar 

  9. K. Kobayashi, M. Kumikawa, and P.H. Shingu:J. Jap. Inst. Metall., 1985, vol. 49, pp. 59–63.

    CAS  Google Scholar 

  10. M. van Rooyen, J.A. Sinte Maartensdijk, and E.J. Mittemeijer:Metall. Trans. A, 1988, vol. 19A, pp. 2433–43.

    Google Scholar 

  11. M. van Rooyen, J.A. van der Hoeven, L. Katgerman, P. van Mourik, Th.H. de Keijser, and E.J. Mittemeijer:Proc. P.M. Aerospace Mater. Conf., Metal Powder Report, ed., Berne, Switzerland, Nov. 1984, vol. 1, pp. 34-1-16.

  12. J.L. Murray and A.J. McAlister:Bull. Alloy Phase Diagr., 1984, vol. 5, pp. 74–84.

    CAS  Google Scholar 

  13. M. van Rooyen, N.M. van der Pers, L. Katgerman, Th.H. de Keijser, and E.J. Mittemeijer:Proc. 5th Int. Conf. Rap. Quenched Metals, S. Steeb and H. Warlimont, eds., Würzburg, F.R.G., Sept. 3-7, 1984, pp. 823-26.

  14. J.W. Christian:The Theory of Transformations in Metals and Alloys, 2nd ed., Pergamon Press, Oxford, 1975, part I.

    Google Scholar 

  15. M.A.J. Somers, R.M. Lankreijer, and E.J. Mittemeijer:Phil. Mag., 1989, vol. 59, pp. 353–78.

    CAS  Google Scholar 

  16. Metals Reference Book, 5th ed., C.J. Smithells, ed., Butterworth’s, London, 1976.

    Google Scholar 

  17. E.J. Mittemeijer, P. van Mourik, and Th.H. de Keijser:Phil. Mag. A, 1981, vol. 43, pp. 1157–64.

    CAS  Google Scholar 

  18. P. van Mourik, Th.H. de Keijser, and E.J. Mittemeijer:Scripta Metall., 1987, vol. 21, pp. 381–85.

    Article  Google Scholar 

  19. K. Kobayashi, P.H. Shingu, H. Kanbara, and R. Ozaki:Trans. Jap. Inst. Metall., 1976, vol. 17, pp. 545–50.

    Google Scholar 

  20. E.J. Mittemeijer, Liu Cheng, P.J. van der Schaaf, C.M. Brakman, and B.M. Korevaar:Metall. Trans. A, 1988, vol. 19A, pp. 925–32.

    CAS  Google Scholar 

  21. E.J. Mittemeijer, A. van Gent, and P.J. van der Schaaf:Metall. Trans. A, 1986, vol. 17A, pp. 1441–45.

    CAS  Google Scholar 

  22. H.E. Kissinger:Anal. Chem., 1957, vol. 29, pp. 1702–06.

    Article  CAS  Google Scholar 

  23. T. Ozawa:J. Therm. Anal., 1970, vol. 2, pp. 301–24.

    Article  CAS  Google Scholar 

  24. M.E. Bishop and K.E. Fletcher:Int. Metall. Rev., 1972, vol. 17, pp. 203–25.

    CAS  Google Scholar 

  25. R.W. Siegel:J. Nucl. Mater., 1978, vol. 69–70, pp. 117–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Rooyen, M., Mittemeijer, E.J. Precipitation of silicon in aluminum-silicon: A calorimetric analysis of liquid-quenched and solid- quenched alloys. Metall Trans A 20, 1207–1214 (1989). https://doi.org/10.1007/BF02647402

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647402

Keywords

Navigation