Skip to main content
Log in

An assessment of studies on homogeneous diffusional nucleation kinetics in binary metallic alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A critical review is presented of all studies on homogeneous nucleation kinetics in crystalline binary metallic alloys located in the literature. Emphasis was first placed upon examining the data on the number of precipitates per unit volume of matrix phase,N v , recorded as a function of isothermal reaction or aging time. With the exception of the results of a few studies on Cu-rich Cu-Co alloys, all of these data were extensively “contaminated” by significant overlapping of the diffusion fields of adjacent precipitates and especially by concurrent coarsening. The use of the “nucleation window” concept was advocated as a means of finding a range of alloy compositions and reaction temperatures in a particular alloy system within which sufficient data onN v vs time can be collected to evaluate the steady-state nucleation rate,J s * without significant intervention by either disturbing effect. Transmission electron microscopy (TEM) was identified as a particularly valuable experimental tool for measuringN v . However, smallangle neutron scattering (SANS) is also proving useful for this purpose, and the combination of SANS with FIM-AP (field ion microscope-atom probe) has uncovered information of crucial importance to understanding the transformation sequence in Cu-Co alloys. Wagner and co-workers[52,62,63,64-78-79] have demonstrated the presence of precursor Co segregations large in extent but small in amplitude, of which the most successful lead to the formation of identifiable precipitates (within which segregation is very much larger in amplitude but considerably smaller in extent). The Wagneret al. work suggests that the supersaturations at which they formed were insufficient to permit the fluctuations which did not eventually fulfill exactly the specifications for critical nuclei to evolve into precipitates. While classical, the Cahn-Hilliard continuum nonclassical [su2] and Cook-deFontaine discrete lattice point nonclassical nucleation theories[25,26,27] yield nearly identical results in the temperature-Co concentration range experimentally studied, theJ* s values thus calculated are a few orders of magnitude smaller than the experimentally measured rates when the concentration of vacancies present at the reaction temperature is (reasonably) assumed operative. On the basis of theoretical and computer simulation studies by Binderet al. [84,87,89,90] and Kleinet al.,[91–94] the observed precursor concentration fluctuations are indicative of relatively long-range interactions among adjacent atoms in Cu-Co alloys, whereas the solution thermodynamics so far applied to this system is based upon the use of short interaction distances. This is suggested to be the principal source of the discrepancy between measured and calculated nucleation kinetics in Cu-Co alloys. Suggestions are offered for future research intended to clarify some of the complexities which have recently become apparent in studies of homogeneous nucleation kinetics in binary metallic alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Gibbs:Collected Works, Yale University Press, New Haven, CT, 1948, vol. 1.

    Google Scholar 

  2. J.W. Cahn and J.E. Hilliard:J. Chem. Phys., 1959, vol. 31, p. 539.

    Article  Google Scholar 

  3. L. Farkas:Z. Phys. Chem., 1927, vol. 125, p. 236.

    CAS  Google Scholar 

  4. R. Becker and W. Doering:Ann. Phys., 1935, vol. 24, p. 719.

    Article  CAS  Google Scholar 

  5. J.B. Zeldovich:Acta Physiochim. URSS, 1943, vol. 18, p. 1.

    CAS  Google Scholar 

  6. B.E. Sundquist and R.A. Oriani:J. Chem. Phys., 1962, vol. 36, p. 2604.

    Article  CAS  Google Scholar 

  7. R.B. Heady and J.W. Cahn:J. Chem. Phys., 1973, vol. 58, p. 896.

    Article  CAS  Google Scholar 

  8. R.G. Howland, N.C. Wong, and C.M. Knobler:J. Chem. Phys., 1980, vol. 73, p. 522.

    Article  CAS  Google Scholar 

  9. A.J. Schwartz, S. Krishnamurthy, and W.I. Goldburg:Phys. Rev. A, 1980, vol. 21A, p. 1331.

    Article  Google Scholar 

  10. J.S. Huang, W.I. Goldburg, and M.R. Moldover:Phys. Rev. Lett., 1975, vol. 34, p. 639.

    Article  CAS  Google Scholar 

  11. K. Binder and D. Stauffer:Adv. Phys., 1976, vol. 25, p. 343.

    Article  CAS  Google Scholar 

  12. J.S. Langer and A.J. Schwartz:Phys. Rev. A, 1980, vol. A21, p. 948.

    Article  Google Scholar 

  13. C. Wagner:Z. Elektrochem., 1961, vol. 65, p. 581.

    CAS  Google Scholar 

  14. I.M. Lifshitz and V.V. Slyozov:Phys. Chem. Solids, 1961, vol. 19, p. 35.

    Article  Google Scholar 

  15. G.M. Pound:Metall. Trans. A, 1985, vol. 16A, pp. 487–502.

    CAS  Google Scholar 

  16. I. Servi and D. Turnbull:Acta Metall., 1966, vol. 14, p. 161, p. 908.

    Article  CAS  Google Scholar 

  17. D.H. Kirkwood:Acta Metall., 1970, vol. 18, p. 563.

    Article  CAS  Google Scholar 

  18. A.W. West and D.H. Kirkwood:Scripta Metall., 1976, vol. 10, p. 681.

    Article  CAS  Google Scholar 

  19. T. Hirata and D.H. Kirkwood:Acta Metall., 1977, vol. 25, p. 1425.

    Article  CAS  Google Scholar 

  20. F.K. LeGoues and H.I. Aaronson:Acta Metall., 1984, vol. 32, p. 1855.

    Article  CAS  Google Scholar 

  21. P. Haasen:Metall. Trans. A, 1985, vol. 16A, pp. 1173–84.

    CAS  Google Scholar 

  22. C.M. Knobler:Decomposition of Alloys: The Early Stages, P. Haasen, V. Gerold, R. Wagner, and M.F. Ashby, eds., Pergamon Press, New York, NY, 1984, p. 55.

    Google Scholar 

  23. D. Turnbull:Trans. AIME, 1948, vol. 175, p. 774.

    Google Scholar 

  24. J.W. Cahn and J.E. Hilliard:J. Chem. Phys., 1958, vol. 28, p. 258.

    Article  CAS  Google Scholar 

  25. H.E. Cook, D. deFontaine, and J.E. Hilliard:Acta Metall., 1969, vol. 17, p. 765.

    Article  CAS  Google Scholar 

  26. H.E. Cook and D. deFontaine:Acta Metall., 1969, vol. 17, p. 915.

    Article  CAS  Google Scholar 

  27. H.E. Cook and D. deFontaine:Acta Metall., 1971, vol. 19, p. 607.

    Article  CAS  Google Scholar 

  28. W.C. Johnson, C.L. White, P.E. Marth, P.K. Ruf, S. Tuominen, K.D. Wade, K.C. Russell, and H.I. Aaronson:Metall. Trans. A, 1975, vol. 6A, pp. 911–19.

    CAS  Google Scholar 

  29. Wai S. Chan, J.K. Lee, G.J. Shiflet, K.C. Russell, and H.I. Aaronson:Metall. Trans. A, 1978, vol. 9A, pp. 1016–17.

    CAS  Google Scholar 

  30. K.C. Russell:Acta Metall., 1969, vol. 17, p. 1123.

    Article  CAS  Google Scholar 

  31. H.I. Aaronson and K.C. Russell:Proc. Int. Conf. on Solid-Solid Phase Transformations, TMS, Warrendale, PA, 1982, p. 371.

    Google Scholar 

  32. J.W. Cahn:Acta Metall., 1959, vol. 7, p. 18.

    Article  CAS  Google Scholar 

  33. H.I. Aaronson, K.R. Kinsman, and K.C. Russell:Scripta Metall., 1970, vol. 4, p. 101.

    Article  CAS  Google Scholar 

  34. M. Enomoto and H.I. Aaronson:Metall. Trans. A, 1986, vol. 17A, pp. 1381–84.

    CAS  Google Scholar 

  35. O.D. Sherby and M.T. Simnad:Trans. ASM, 1961, vol. 54, p. 227.

    CAS  Google Scholar 

  36. A.M. Brown and M.F. Ashby:Acta Metall., 1980, vol. 28, p. 1085.

    Article  CAS  Google Scholar 

  37. N. Peterson:Nucl. Mater., 1978, vol. 69, p. 3.

    Article  Google Scholar 

  38. W.K. Warburton and D. Turnbull: inDiffusion in Solids, A.S. Nowick and J.J. Burton, eds., Academic Press, New York, NY, 1975, p. 171.

    Google Scholar 

  39. K.C. Russell:Phase Transformations, ASM, Metals Park, OH, 1970, p. 219.

    Google Scholar 

  40. K.C. Russell:Adv. Colloid Interface Sci., 1980, vol. 13, p. 205.

    Article  CAS  Google Scholar 

  41. A.J. Hillel, J.T. Edwards, and P. Wilkes:Phil. Mag., 1975, vol. 32, p. 189.

    CAS  Google Scholar 

  42. F. Ernst and P. Haasen:Phys. Status Solidi A, 1987, vol. 104, p. 403.

    Article  CAS  Google Scholar 

  43. F. Haider: Doctoral Thesis, University of Gottingen, Federal Republic of Germany, 1987.

    Google Scholar 

  44. H. Wendt: inDecomposition of Alloys: The Early Stages, P. Haasen, V. Gerold, R. Wagner, and M.F. Ashby, eds., Pergamon Press, New York, NY, 1984, p. 133.

    Google Scholar 

  45. L. Von Alvensleben and R. Wagner: inDecomposition of Alloys: The Early Stages, Haasen, V. Gerold, R. Wagner, and M.F. Ashby, eds., Pergamon Press, New York, NY, 1984, p. 143.

    Google Scholar 

  46. H. Wendt, Z. Liu, and P. Haasen: inDecomposition of Alloys: The Early Stages, Haasen, V. Gerold, R. Wagner, and M.F. Ashby, eds., Pergamon Press, New York, NY, 1984, p. 127.

    Google Scholar 

  47. H. Wendt and P. Haasen:Acta Metall., 1983, vol. 31, p. 1649.

    Article  CAS  Google Scholar 

  48. H. Wendt and P. Haasen:Scripta Metall., 1985, vol. 19, p. 1053.

    Article  CAS  Google Scholar 

  49. F.K. LeGoues: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1983.

    Google Scholar 

  50. F.K. LeGoues, T.L. McDevitt, and H.I. Aaronson:Scripta Metall., 1986, vol. 20, p. 1305.

    Article  CAS  Google Scholar 

  51. R. Kampmann and R. Wagner:Atomic Transport and Defects in Metals by Neutron Scattering, Springer-Verlag, Berlin, 1986, p. 73.

    Google Scholar 

  52. W. Wagner, J. Piller, H.-P. Degischer, and H. Wollenberger:Zeit. Metallkd., 1985, vol. 76, p. 693.

    CAS  Google Scholar 

  53. W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1963, vol. 34, p. 323.

    Article  CAS  Google Scholar 

  54. H.B. Aaron, D. Fainstein, and G.R. Kotier:J. Appl. Phys., 1970, vol. 41, p. 4404.

    Article  Google Scholar 

  55. D. Turnbull:Solid State Phys., 1956, vol. 3, p. 226.

    Google Scholar 

  56. J.W. Cahn and W.C. Hagel:Decomposition of Austenite by Diffusional Processes, Interscience, New York, NY, 1962, p. 131.

    Google Scholar 

  57. H.K. Hardy and T.J. Heal:Prog. Met. Phys., 1954, vol. 5, p. 143.

    Article  CAS  Google Scholar 

  58. P. Haasen:Metall. Trans. A, 1986, vol. 17A, p. 742.

    CAS  Google Scholar 

  59. T. Al-Kassab: Diplomarbeit, University of Gottingen, Federal Republic of Germany, 1987.

    Google Scholar 

  60. P. Haasen and J. Piller:Z. Metallkd., 1987, vol. 78, p. 757.

    CAS  Google Scholar 

  61. D.J.H. Cockayne:J. Microsc, 1973, vol. 98, p. 116.

    Google Scholar 

  62. W. Wagner:J. Phys. F: Met. Phys., 1986, vol. 16, p. L239.

    Article  CAS  Google Scholar 

  63. W. Wagner:Z. Metallkd., 1989, vol. 80, p. 873.

    CAS  Google Scholar 

  64. W. Wagner:Acta Metall. Mater., 1990, vol. 38, p. 2711.

    Article  CAS  Google Scholar 

  65. K.-E. Biehl and R. Wagner:Proc. 27th Int. Field Emission Symp., Y. Yashiro and N. Igata, eds., Tokyo, 1980, p. 267.

  66. K.-E. Biehl and R. Wagner:Proc. Int. Conf. on Solid-Solid Phase Transformations, TMS, Warrendale, PA, 1982, p. 185.

    Google Scholar 

  67. H. Wendt and R. Wagner:Acta Metall., 1982, vol. 30, p. 1561.

    Article  CAS  Google Scholar 

  68. F.K. LeGoues, H.I. Aaronson, Y.W. Lee, and G.J. Fix:Proc. Int. Conf. on Solid-Solid Phase Transformations, TMS, Warrendale, PA, 1982, p. 427.

    Google Scholar 

  69. F.K. LeGoues, Y.W. Lee, and H.I. Aaronson:Acta Metall., 1984, vol. 32, p. 1837.

    Article  CAS  Google Scholar 

  70. F.K. LeGoues, H.I. Aaronson, and Y.W. Lee:Acta Metall., 1984, vol. 32, p. 1845.

    Article  CAS  Google Scholar 

  71. Y.W. Lee and H.I. Aaronson:Acta Metall., 1980, vol. 28, p. 539.

    Article  Google Scholar 

  72. K.C. Russell: Massachusetts Institute of Technology, Cambridge, MA, private communication, 1990.

  73. P.G. Shewmon:Diffusion in Solids, 2nd ed., TMS, Warrendale, PA, 1990, p. 86.

    Google Scholar 

  74. R. Dohl, M.-P. Macht, and V. Naundorf:Phys. Status Solidi A, 1984, vol. 86, p. 603.

    Article  Google Scholar 

  75. R. Becker:Ann. Phys., 1938, vol. 32, p. 128.

    Article  CAS  Google Scholar 

  76. Y.W. Lee, K.C. Russell, and H.I. Aaronson:Scripta Metall., 1981, vol. 15, p. 723.

    Article  CAS  Google Scholar 

  77. G.J. Shiflet, Y.W. Lee, H.I. Aaronson, and K.C. Russell:Scripta Metall., 1981, vol. 15, p. 719.

    Article  CAS  Google Scholar 

  78. W. Wagner and W. Petty:Phys. B, 1989, vols. 156–157, p. 65.

    Article  Google Scholar 

  79. X. Jiang, W. Wagner, and H. Wollenberger: Z.Metallkd., in press.

  80. M.F. Chisholm: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1986.

    Google Scholar 

  81. M.F. Chisholm and D.E. Laughlin:Phase Transformations ’87, G.W. Lorimer, ed., Institute of Metals, London, 1988, p. 1.

    Google Scholar 

  82. J.W. Cowley:Phys. Rev., 1950, vol. 77, p. 669.

    Article  CAS  Google Scholar 

  83. P.C. Clapp and S.C. Moss:Phys. Rev., 1966, vol. 142, p. 418.

    Article  CAS  Google Scholar 

  84. K. Binder:Ann. Phys. (NY), 1976, vol. 98, p. 390.

    Article  Google Scholar 

  85. M. Kalos, J.L. Lebowitz, O. Penrose, and A. Sur:J. Stat. Phys., 1978, vol. 18, p. 39.

    Article  Google Scholar 

  86. D. Stauffer, A. Coniglio, and D.W. Heermann:Phys. Rev. Lett., 1982, vol. 49, p. 1299.

    Article  Google Scholar 

  87. K. Binder and M.H. Kalso:J. Stat. Phys., 1980, vol. 22, p. 363.

    Article  Google Scholar 

  88. C. Billotet and K. Binder:Z. Phys., 1979, vol. B32, p. 195.

    Google Scholar 

  89. K. Binder and D. Stauffer:Phys. Rev. Lett., 1974, vol. 33, p. 1006.

    Article  Google Scholar 

  90. K. Binder:Phys. Rev., 1984, vol. A29, p. 341.

    Google Scholar 

  91. W. Klein and C. Unger:Phys. Rev., 1983, vol. B28, p. 445.

    Google Scholar 

  92. C. Unger and W. Klein:Phys. Rev., 1984, vol. B29, p. 2698.

    Google Scholar 

  93. D.W. Heermann and W. Klein:Phys. Rev. Lett., 1983, vol. 50, p. 1062.

    Article  Google Scholar 

  94. D.W. Heermann and W. Klein:Phys. Rev., 1983, vol. B27, p. 1732.

    Google Scholar 

  95. D.W. Heermann, W. Klein, and D. Stauffer:Phys. Rev. Lett., 1982, vol. 49, p. 1262.

    Article  Google Scholar 

  96. C. Unger and W. Klein:Phys. Rev., 1985, vol. B31, p. 6127.

    Google Scholar 

  97. W.A. Johnson and R.F. Mehl:Trans. AIME, 1939, vol. 135, p. 416.

    Google Scholar 

  98. A.J. Ardell and R.B. Nicholson:Acta Metall., 1966, vol. 14, p. 1295.

    Article  CAS  Google Scholar 

  99. L. Kampmann and M. Kahlweit:Ber. Bunsen-Ges. Phys. Chem., 1967, vol. 71, p. 78.

    CAS  Google Scholar 

  100. R. Kampmann and R. Wagner:Decomposition of Alloys: The Early Stages, Pergamon Press, New York, NY, 1984, p. 91.

    Google Scholar 

  101. S.A. Hill and B. Ralph:Acta Metall., 1982, vol. 30, p. 2217.

    Google Scholar 

  102. R. Wagner:Crystals, Springer-Verlag, Berlin, 1982, vol. 6.

    Google Scholar 

  103. J.W. Cahn:Acta Metall., 1966, vol. 14, p. 1685.

    Article  CAS  Google Scholar 

  104. J.W. Cahn:Trans. TMS-AIME, 1968, vol. 242, p. 166.

    CAS  Google Scholar 

  105. J. Feder, K.C. Russell, J. Lothe, and G.M. Pound:Adv. Phys., 1966, vol. 15, p. 111.

    Article  CAS  Google Scholar 

  106. W.F. Lange III, M. Enomoto, and H.I. Aaronson:Metall. Trans. A, 1988, vol. 19A, pp. 427–40.

    Google Scholar 

  107. M. Enomoto and H.I. Aaronson:Metall. Trans. A, 1986, vol. 17A, pp. 1385–97.

    CAS  Google Scholar 

  108. B. Fruhauf, W. Gust, R. Kampmann, B. Predel, E. Wachtel, and R. Wagner: unpublished research, 1990; see Ref. 64.

  109. R. Bormann: private communication, 1990; see Ref. 64.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the “G. Marshall Pound Memorial Symposium on the Kinetics of Phase Transformations” presented as part of the 1990 fall meeting of TMS, October 8–12, 1990, in Detroit, MI, under the auspices of the ASM/MSD Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aaronson, H.I., LeGoues, F.K. An assessment of studies on homogeneous diffusional nucleation kinetics in binary metallic alloys. Metall Trans A 23, 1915–1945 (1992). https://doi.org/10.1007/BF02647541

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647541

Keywords

Navigation