Skip to main content
Log in

Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Cuddy:Metall. Trans., 1970, vol. 1, pp. 395–401.

    CAS  Google Scholar 

  2. R.K. Bhargava, J. Moteff, and R.W. Swindeman:Metall. Trans. A, 1976, vol. 7A, pp. 879–84.

    CAS  Google Scholar 

  3. O.K. Chopra and K. Natesan:Metall. Trans. A, 1971, vol. 8A, pp. 633–38.

    Google Scholar 

  4. V.A. Biss and V.K. Sikka:Metall. Trans. A, 1981, vol. 12A, pp. 1360–62.

    Google Scholar 

  5. I.W. Chen and A.S. Argon.:Acta Metall., 1981, vol. 29, p. 1321.

    Article  CAS  Google Scholar 

  6. J. Don and S. Majumdar:Acta Metall., 1986, vol. 34, p. 961.

    Article  CAS  Google Scholar 

  7. R. Zauter, F. Petry, H.-J. Christ, and H. Mughrabi:Mater. Sci. Eng. A, 1990, vol. 124, p. 125.

    Article  Google Scholar 

  8. K. Tsuzaki, T. Hori, T. Maki, and I. Tamura:Mater. Sci. Eng., 1983, vol. 61, p. 247.

    Article  Google Scholar 

  9. H. Abdel-Raouf, A. Plumtree, and T.H. Topper:Metall. Trans., 1974, vol. 5, pp. 267–77.

    Google Scholar 

  10. P.S. Maiya and S. Majumdar:Metall. Trans. A, 1977, vol. 8A, pp. 1651–60.

    CAS  Google Scholar 

  11. H. Nahm, J. Moteff, and D.R. Diercks:Acta Metall., 1977, vol. 25, p. 107.

    Article  CAS  Google Scholar 

  12. A.M. Ermi and J. Moteff:Metall. Trans. A, 1982, vol. 13A, pp. 1577–1588.

    Google Scholar 

  13. R. Koterazawa and T. Nosho:Fatigue Fract. Eng. Mater. Struct., 1991, vol. 14, p. 1.

    Article  Google Scholar 

  14. K. Kuwabara and A. Nitta:Fatigue Fract. Eng. Mater. Struct., 1979, vol. 2, p. 293.

    Article  CAS  Google Scholar 

  15. K. Kuwabara, A. Nitta, and T. Kitamura:Proc. Int. Conf. on Advances in Life Prediction Methods, ASME, 1983, p. 131.

  16. K. Kuwabara and A. Nitta:CR1EPI Report, 1978, E 278003.

  17. S. Taira, M. Fujino, and R. Ohtani:Fatigue Fract. Eng. Mater. Struct., 1979, vol. 1, p. 495.

    Article  CAS  Google Scholar 

  18. G.R. Halford, M.A. McGraw, R.C. Bill, and P.D. Fanti: inLow Cycle Fatigue: Future Directions, H.D. Solomon, G.R. Halford, L.R. Kaisand, and B.N. Lies, eds., ASTM STP 942, 1988, p. 652.

  19. R. Zauter, F. Petry, H.-J. Christ, and H. Mughrabi: inThermomechanical Fatigue Behavior of Materials, H. Sehitoglu, ed., ASTM STP 1186, 1993, pp. 70-90.

  20. K.B.S. Rao, M. Valsan, R. Sandhya, S.L. Mannan, and P. Rodriguez:Met. Mater. Proc, 1990, vol. 2, p. 17.

    CAS  Google Scholar 

  21. D.J. Kim and S.W. Nam:J. Mater. Sci., 1988, vol. 23, p. 1024.

    Article  Google Scholar 

  22. H.-J. Christ, K. Eckert, H. Mughrabi, F. Petry, and R. Zauter:Meas. Sci. Technol., submitted.

  23. R.W. Neu and H. Sehitoglu:Metall. Trans. A, 1989, vol. 20A, p. 1755.

    CAS  Google Scholar 

  24. M. Fujino and S. Taira:Proc. 3rd Int. Conf. on Mechanical Behaviour of Materials, Pergamon Press, Oxford, vol. 2, 1979, p. 49.

    Google Scholar 

  25. S. Taira and M. Fujino:Trans. Iron Steel Inst. Jpn., 1979, vol. 19, p. 185.

    CAS  Google Scholar 

  26. T. Udoguchi and T. Wada:Proc. Int. Conf. on Thermal Stresses and Thermal Fatigue, Berkeley, England, 1969, Butterworth, London, 1971, p. 109.

    Google Scholar 

  27. D.A. Miller and R.H. Priest: inHigh Temperature Fatigue: Properties and Prediction, R.P. Skelton, ed., Elsevier Applied Science, London 1987, p. 113.

    Google Scholar 

  28. K.D. Sheffler: inThermal Fatigue of Materials and Components, D.A. Spera and D.F. Mowbray, eds., ASTM STP 612, 1976, p. 59.

  29. R.W. Swindeman, K. Farrell, and M.H. Yoo:Res. Mech. Lett., 1981, vol. 1, p. 67.

    CAS  Google Scholar 

  30. M. GroBh↑ser: Diploma Thesis, University Erlangen-Nurnberg, 1991.

  31. U. Hofmann:Internal Report Studienarbeit, University Erlangen-N╚nberg, Erlangen, 1991.

    Google Scholar 

  32. B.K. Min and R. Raj:Acta Metall., 1978, vol. 26, p. 1007.

    Article  CAS  Google Scholar 

  33. S. Majumdar: inThermal Stress, Material Deformation and Thermomechanical Fatigue, H. Sehitoglu and S.Y. Zamrik, eds., ASME, New York, NY, 1987, PVP-vol. 123, p. 31.

    Google Scholar 

  34. H.J. Frost and M.F. Ashby:Deformation Mechanism Maps, Pergamon Press, Oxford, 1982, p. 66.

    Google Scholar 

  35. R. Danzer:Internal Report University of Leoben, Leoben, Austria, 1985.

  36. R. Sandstrom, J. Engstrom, J.O. Nilsson, and A. Nordgren:High Temp. Technol., 1989, vol. 7, p. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

H.J.Christ formerly with the University of Erlangen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zauter, R., Christ, H.J. & Mughrabi, H. Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage. Metall Mater Trans A 25, 401–406 (1994). https://doi.org/10.1007/BF02647985

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647985

Keywords

Navigation