Skip to main content
Log in

The identification of nonlinear biological systems: Volterra kernel approaches

  • Reprised Papers from Volume 24, Number 2
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Representation, identification, and modeling are investigated for nonlinear biomedical systems. We begin by considering the conditions under which a nonlinear system can be represented or accurately approximated by a Volterra series (or functional expansion). Next, we examine system identification through estimating the kernels in a Volterra functional expansion approximation for the system. A recent kernel estimation technique that has proved to be effective in a number of biomedical applications is investigated as to running time and demonstrated on both clean and noisy data records, then it is used to illustrate identification of cascades of alternating dynamic linear and static nonlinear systems, both single-input single-output and multivariable cascades. During the presentation, we critically examine some interesting biological applications of kernel estimation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alper, P., and D. Poortvliet. On the use of Volterra series representation and higher order impulse responses for nonlinear systems.Elec. Lab. Rep. Tech. Univ. Delft, Netherlands, 1963.

  2. Andronikou, A. M., G. A. Bekey, and S. F. Masri. Identification of nonlinear hysteretic systems using random search.IFAC Ident. Sys. Param. Est. 1: 263–268, 1982.

    Google Scholar 

  3. Barrett, J. F. The use of functionals in the analysis of nonlinear physical systems.J. Elect. Control 15: 567–615, 1963.

    Google Scholar 

  4. Barrett, J. F. The use of Volterra series to find region of stability of a nonlinear differential equation.Int. J. Control 1: 209–216, 1965.

    Google Scholar 

  5. Barrett, J. F. Functional series representation of nonlinear systems—some theoretical comments.6th IFAC Symp. Ident. Sys. Param. Est. 1: 251–256, 1982.

    Google Scholar 

  6. Billings, S. A., and W. S. F. Voon. Correlation based model validity tests for nonlinear models.Int. J. Control 44: 235–244, 1986.

    Google Scholar 

  7. Bose, A. G. A theory of nonlinear systems.MIT Res. Lab. Elec. Tech. Rep. 309, 1956.

  8. Boyd, S., and L. O. Chua. Fading memory and the problem of approximating non-linear operators with Volterra series.IEEE Trans. Circ. Sys. 32: 1150–1160, 1985.

    Article  Google Scholar 

  9. Boyd, S., Y. S. Tang, and L. O. Chua. Measuring Volterra kernels.IEEE Trans. Circ. Sys. 30: 571–577, 1983.

    Article  Google Scholar 

  10. Brilliant, M. B. Theory of the analysis of nonlinear systems.MIT Res. Lab. Elec. Tech. Rep. 345 1958.

  11. Bussgang, J. J. Crosscorrelation functions of amplitude distorted Gaussian signals.MIT Res. Lab. Elec. Tech. Rep. 216: 1–14, 1952.

    Google Scholar 

  12. Chen, H. W. L. D. Jacobson, and J. P. Gaske. Structural classification of multi-input nonlinear systems.Biol. Cyber. 63: 341–357, 1990.

    Article  CAS  Google Scholar 

  13. Chon, K. H., N. H. Holstein-Rathlou, D. J. Marsh, and V. Z. Marmarelis. Parametric and nonparametric nonlinear modeling of renal autoregulation dynamics. In:Advanced Methods of Physiological System Modeling, vol. 3. edited by V. Z. Marmarelis. New York: Plenum Press, 1994, pp. 195–210.

    Google Scholar 

  14. Clynes, M. The non-linear biological dynamics of unidirectional rate sensitivity illustrated by analog computer analysis, pupillary reflex to light and sound, and heart rate behavior.Ann. NY Acad. Sci. X: 98, 1962.

    Google Scholar 

  15. Ewen, E. J., and D. D. Weiner. Identification of weakly nonlinear systems using input and output measurements.IEEE Trans. Circ. Sys. 27: 1255–1261, 1980.

    Article  Google Scholar 

  16. Flake, P. Volterra series representation of nonlinear systems.AIEE Trans. 64: 330–335, 1963.

    Google Scholar 

  17. Frechet, M. Sur les fonctionnelles, continues.Annales Scientifiques de l’Ecole Normal Superieure 27: 193–219, 1910.

    Google Scholar 

  18. Gardner, W. A., and T. L. Archer. Exploitation of cyclostationarity for identifying the Volterra kernels of nonlinear systems.IEEE Trans. Inform. Theory 39: 535–542, 1993.

    Article  Google Scholar 

  19. George, D. Continuous nonlinear systems.MIT Res. Lab. Elec. Tech. Rep. 335: 246–281, 1959.

    Google Scholar 

  20. Goussard, Y., W. C. Krenz, and L. W. Stark. An improvement of the Lee and Schetzen cross-correlation method.IEEE Trans. Automat. Control 30: 895–898, 1985.

    Article  Google Scholar 

  21. Goussard, Y., W. C. Krenz, L. W. Stark, and G. Demoment. Practical identification of functional expansions of nonlinear systems submitted to non-Gaussian inputs.Ann. Biomed. Eng. 19: 401–427, 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Hung, G., and L. Stark. The kernel identification methods: review of theory, calculation, application, and interpretation.Math. Biosci. 37: 135–170, 1977.

    Article  Google Scholar 

  23. Hung, G. K., and L. W. Stark. The interpretation of kernels: an overview.Ann. Biomed. Eng. 19: 509–519, 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Hunter, I. W., and R. E. Kearney. Generation of random sequences with jointly specified probability density and autocorrelation functions.Biol. Cybern. 47: 141–146, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Hunter, I. W., and R. E. Kearney. Two-sided linear filter identification.Med. & Biol. Eng. & Comput. 21: 203–209, 1983.

    Article  CAS  Google Scholar 

  26. Hunter, I. W., and M. J. Korenberg. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models.Biol. Cybern. 55: 135–144, 1986.

    PubMed  CAS  Google Scholar 

  27. Klein, S. Interpreting nonlinear systems: the third order kernel of the eye movement control system. In:10th Annual Pittsburgh Conference on Modeling and Simulation, edited by Vogt and Mickle. Pittsburgh, PA: University of Pittsburgh, 215–222, 1979.

    Google Scholar 

  28. Klein, S. A., Relationships between kernels measured with different stimuli. In:Advanced Methods of Physiological System Modeling, vol. I, edited by V. Z. Marmarelis. Los Angeles: Biomedical Simulations Resource, University of Southern California, 1987, pp. 278–288.

    Google Scholar 

  29. Klein, S., and S. Yasui. Nonlinear systems analysis with non-Gaussian white stimuli: general basis functionals and kernels.IEEE Trans. Inform. Theory, 25: 495–500, 1979.

    Article  Google Scholar 

  30. Kolmogoroff, A. N., and S. V. Fomin,Elements of the Theory of Functions and Functional Analysis. New York: Graylock Press, 1957.

    Google Scholar 

  31. Korenberg, M. J. Aspects of time-varying and nonlinear systems theory with biological applications. Montréal, Quebec, Canada: McGill University, Ph.D. Thesis, 1972.

    Google Scholar 

  32. Korenberg, M. J. Identification of biological cascades of linear and static nonlinear systems.Proc. 16th Midwest Symp. Circ. Theory 18.2: 1–9, 1973.

    Google Scholar 

  33. Korenberg, M. J. Cross-correlation analysis of neural cascades.Proc. 10th Ann. Rocky Mountain Bioeng. Symp 1: 47–52, 1973.

    Google Scholar 

  34. Korenberg, M. J. Statistical identification of parallel cascades of linear and nonlinear systems.IFAC Symp. Ident. Sys. Param. Est. 1: 580–585, 1982.

    Google Scholar 

  35. Korenberg, M. J. Statistical identification of Volterra kernels of high order systems.IEEE Int. Symp. Circ. Sys. 2: 570–575, 1984.

    Google Scholar 

  36. Korenberg, M. J. Identifying noisy cascades of linear and static nonlinear systems.IFAC Symp. Ident. Sys. Param. Est. 1: 421–426, 1985.

    Google Scholar 

  37. Korenberg, M. J. Functional expansions, parallel cascades, and nonlinear difference equations. In:Advanced Methods of Physiological System Modeling, vol. 1, edited by V. Z. Marmarelis. Los Angeles: Biomedical Simulations Resource, University of Southern California, 1987, pp. 221–240.

    Google Scholar 

  38. Korenberg, M. J. Identifying nonlinear difference equation and functional expansion representations: the fast orthogonal algorithm.Ann. Biomed. Eng. 16: 123–142, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Korenberg, M. J., A fast orthogonal search method for biological time-series analysis and system identification.Proc. IEEE Int. Conf. Sys. Man. Cybern. Cambridge, MA: 1989, pp. 459–465.

  40. Korenberg, M. J. A robust orthogonal algorithm for system identification and time-series analysis.Biol. Cybern. 60: 267–276, 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Korenberg, M. J. A rapid and accurate method for estimating the kernels of a nonlinear system with lengthy memory. 15th Biennial Symposium Communication, Queen’s University, Kingston, Ontario, Canada, 1990.

  42. Korenberg, M. J. Some new approaches to nonlinear system identification and time-series analysis.Proc. 12th Annu. Int. Conf. IEEE Eng. Med. & Biol. Soc. 12 (1): 20–21, 1990.

    Google Scholar 

  43. Korenberg, M. J. Parallel cascade identification and kernel estimation for nonlinear systems.Ann. Biomed. Eng. 19: 429–455, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Korenberg, M. J., S. B. Bruder, M. Mancini, and P. J. McIlroy. Exact kernel estimation using a noise input: measuring invariant characteristics of cortical cells. Ninth International Conference on Noise in Physical Systems, edited by C. M. Van Vliet. Tea Neck, NJ: World Scientific Publishing Co., 1987, pp. 583–588.

    Google Scholar 

  45. Korenberg, M. J., S. B. Bruder, and P. J. McIlroy. Exact orthogonal kernel estimation from finite data records: extending Wiener’s identification of nonlinear systems.Ann. Biomed. Eng. 16: 201–214, 1988.

    Article  PubMed  CAS  Google Scholar 

  46. Korenberg, M. J., and I. W. Hunter. The identification of nonlinear biological systems: LNL cascade models.Biol. Cybern. 55: 125–134, 1986.

    PubMed  CAS  Google Scholar 

  47. Korenberg, M. J., and I. W. Hunter. The identification of nonlinear biological systems: Wiener kernel approaches.Ann. Biomed. Eng. 18: 629–654, 1990.

    Article  PubMed  CAS  Google Scholar 

  48. Korenberg, M. J., H. M. Sakai, and K.-I. Naka. Dissection of the neuron network in the catfish inner retina. III. Interpretation of spike kernels.J. Neurophysiol. 61: 1110–1120, 1989.

    PubMed  CAS  Google Scholar 

  49. Krenz, W. C., and L. W. Stark. The interpretation of functional series expansions.Ann. Biomed. Eng. 19: 485–508, 1991.

    Article  PubMed  CAS  Google Scholar 

  50. Lee, Y. W. Contribution of Norbert Wiener to linear theory and nonlinear theory in engineering. In:Selected Papers of Norbert Wiener, SIAM, Cambridge, MA: MIT Press, 1964, pp. 17–33.

    Google Scholar 

  51. Lee, Y. W., and M. Schetzen. Measurement of the Wiener kernels of a non-linear systems by crosscorrelation.Int. J. Contr. 2: 237–254, 1965.

    Google Scholar 

  52. Litt, H. I. A Nonlinear Kernel Investigation of Magnetic Resonance Imaging and Computed Tomography. Buffalo, NY: State University of New York at Buffalo, Ph.D. Thesis, 1994.

    Google Scholar 

  53. LYSIS (Ver. 5) Software Program. Los Angeles: Biomedical Simulations Resource, University Southern California.

  54. Marmarelis, P. Z., and K. I. Naka. White-noise analysis of a neuron chain: an application of the Wiener theory.Science 175: 1276–1278, 1972.

    Article  PubMed  CAS  Google Scholar 

  55. Marmarelis, P. Z., and K. I. Naka. Nonlinear analysis and synthesis of receptive-field responses in the catfish retina.J. Neurophys. 36: 605–648, 1973.

    CAS  Google Scholar 

  56. Marmarelis, P. Z., and V. Z. Marmarelis,Analysis of Physiological Systems. New York: Plenum Press, 1978, 487 pp.

    Google Scholar 

  57. Marmarelis, V. Z. Identification of nonlinear biological systems using Laguerre expansions of kernels.Ann. Biomed. Eng. 21: 573–589, 1993.

    Article  PubMed  CAS  Google Scholar 

  58. Marmarelis, V. Z., K. H. Chon, Y.-M. Chen, D. J. Marsh, and N.-H. Holstein-Rathlou. Nonlinear analysis of renal autoregulation under broadband forcing conditions.Ann. Biomed. Eng. 21: 591–603, 1993.

    Article  PubMed  CAS  Google Scholar 

  59. Mohler, R.,Nonlinear Systems: Vol. 1—Dynamics and Control and Vol. 2—Applications to Bilinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991, 470.

    Google Scholar 

  60. Nabet, B., and R. B. Pinter Multiplicative inhibition and Volterra series expansion. In:Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, edited by R. B. Pinter and B. Nabet. Boca Raton, FL: CRC Press, 1992, pp. 475–491.

    Google Scholar 

  61. Ogura, H. Estimation of Wiener kernels of a nonlinear system and fast algorithm using digital Laguerre filters. Proceedings of the 15th NIBB Conference on Information Processing in Neuron Network: White-Noise Analysis, edited by K-I. Naka and Y.-I. Ando. Okazaki, Japan: National Institute for Basic Biology, 1986, pp. 14–62.

    Google Scholar 

  62. Palm, G., and T. Poggio. Stochastic identification methods for nonlinear systems: an extension of the Weiner theory.J. Appl. Math. 34: 524–534, 1978.

    Google Scholar 

  63. Pece, A. E. C., A. S. French, M. J. Korenberg, and J. E. Kuster. Nonlinear mechanisms for gain adaptation in locust photoreceptors.Biophys. J. 57: 733–743, 1990.

    PubMed  CAS  Google Scholar 

  64. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, eds.Numerical Recipes in C. 2nd edition. New York: Cambridge University Press, 1992, 994 pp.

    Google Scholar 

  65. Rice, J. R., A theory of condition.J. Numer. Anal. 3: 287–310, 1966.

    Article  Google Scholar 

  66. Rugh, W. J.Nonlinear System Theory: The Volterra/ Wiener Approach. Baltimore: Johns Hopkins University Press. 1981, 325 pp.

    Google Scholar 

  67. Sakai, H. M., and K.-I. Naka. Signal transmission in the catfish retina. IV. Transmission to ganglion cells.J. Neurophysiol. 58: 1307–1328, 1987.

    PubMed  CAS  Google Scholar 

  68. Sakai, H. M., and K.-I. Naka. Signal transmission in the catfish retina. V. Sensitivity and circuit.J. Neurophysiol. 58: 1329–1350, 1987.

    PubMed  CAS  Google Scholar 

  69. Sakai, H. M., and K.-I. Naka. Dissection of the neuron network in the catfish inner retina. I. Transmission to ganglion cells.J. Neurophysiol. 60: 1549–1567, 1988.

    PubMed  CAS  Google Scholar 

  70. Sakai, H. M., and K.-I. Naka. Dissection of the neuron network in the catfish inner retina. II. Interactions between ganglion cells.J. Neurophysiol. 60: 1568–1583, 1988.

    PubMed  CAS  Google Scholar 

  71. Sakai, H. M., and K.-I. Naka. Dissection of the neuron network in the catfish inner retina. IV. Bidirectional interactions between amacrine and ganglion cells.J. Neurophysiol. 63: 105–119, 1990.

    PubMed  CAS  Google Scholar 

  72. Sakai, H. M., and K.-I. Naka. Dissection of the neuron network in the catfish inner retina. V. Interactions between NA and NB amacrine cells.J. Neurophysiol. 63: 120–130, 1990.

    PubMed  CAS  Google Scholar 

  73. Sakai, H. M., K.-I., Naka, and M. J. Korenberg. White noise analysis in visual neuroscience.Vis. Neurosci. 1: 287–296, 1988.

    Article  PubMed  CAS  Google Scholar 

  74. Sakuranaga, M., Y-J. Ando, and K-I. Naka. Dynamics of ganglion cell response in the catfish and frog retinas.J. Gen. Physiol. 90: 229–259, 1987.

    Article  PubMed  CAS  Google Scholar 

  75. Sakuranaga, M., S. Sato, E. Hida, and K-I. Naka. Nonlinear analysis: mathematical theory and biological applications.CRC Crit. Rev. Biomed. Eng. 14: 127–184, 1986.

    CAS  Google Scholar 

  76. Sandberg, I. W. Expansions for discrete-time nonlinear systems.Circuit Sys. Signal Process. 2: 179–192, 1983.

    Article  Google Scholar 

  77. Sandberg, A., and L. Stark. Wiener G-function analysis as an approach to nonlinear characteristics of human pupil light reflex.Brain Res. 11: 194–211, 1968.

    Article  PubMed  CAS  Google Scholar 

  78. Schetzen, M. Measurement of the kernels of a nonlinear system of finite order.Int. J. Control 1: 251–263, 1965.

    Google Scholar 

  79. Schetzen, M.,The Volterra and Wiener Theories of Nonlinear Systems (second edition). New York: John Wiley & Sons, 1980, 531 pp.

    Google Scholar 

  80. Schetzen, M. Nonlinear system modeling based on the Wiener theoryProc. IEEE 69: 1557–1573, 1981.

    Google Scholar 

  81. Shinners, S. M.,Modern Control System Theory and Application. Boston: Addison-Wesley, 1972, 528 pp.

    Google Scholar 

  82. Spekreijse, H., and H. Oosting. Linearzing: a method for analyzing and synthesizing nonlinear systems.Kybernetik 7: 22–31, 1970.

    Article  PubMed  CAS  Google Scholar 

  83. Stark, L. W. Stability, oscillation, and noise in the human pupillary servo mechanism.Bol. del Inst. de Estudios Medicos y Biologicos 21: 201–222, 1963.

    CAS  Google Scholar 

  84. Stark, L. W. Neurological control systems: studies in bioengineering, New York: Plenum Press, 1968, 428 pp.

    Google Scholar 

  85. Stark, L. W. The pupillary control system: its nonlinear adaptive and stochastic engineering design characteristics.Automatica 5: 655–676, 1969.

    Article  Google Scholar 

  86. Stark, L. W., Y. Takahashi, and G. Zames. Nonlinear servoanalysis of human lens accommodation.IEEE Trans. Sys. Sci. Cyber. 1: 75–83, 1965.

    Article  Google Scholar 

  87. Strang, G., Linear Algebra and its Applications. (second edition). New York: Academic Press, 1980.

    Google Scholar 

  88. Sunay, M. O., and M. M. Fahmy. An orthogonal approach to the spatial-domain design of 2-D recursive and nonrecursive nonlinear filters.IEEE Trans. Circ. Sys. 41: 669–677, 1994.

    Article  Google Scholar 

  89. Sutter, E. E. A practical non-stochastic approach to nonlinear time-domain analysis. In:Advanced Methods of Physiological System Modeling, vol. I., edited by V. Z. Marmarelis. Los Angeles: Biomedical Simulations Resource, University of Southern California, 1987, pp. 303–315.

    Google Scholar 

  90. Sutter, E. E. A deterministic approach to nonlinear systems analysis. In:Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, edited by R. B. Pinter and B. Nabet. Boca Raton, FL: CRC Press, 1992, pp. 171–220.

    Google Scholar 

  91. Sutter, E. E., and D. Tran. The field topography of ERG components in man. I. The phototopic luminance response.Vis. Res. 32: 443–446, 1992.

    Google Scholar 

  92. Victor, J. D. The fractal dimension of a test signal: implications for system identification procedures.Biol. Cybern. 57: 421–426, 1987.

    Article  PubMed  CAS  Google Scholar 

  93. Victor, J. D., and B. W. Knight. Nonlinear analysis with an arbitrary stimulus ensemble.Q. Appl. Math. 37: 113–136, 1979.

    Google Scholar 

  94. Volterra, V., Leçons sur les Fonctions de Lignes. Paris: Gauthier-Villars, 1913.

    Google Scholar 

  95. Volterra, V.,Theory of Functionals and of Integral and Integro-Differential Equations. New York: Dover, 1959.

    Google Scholar 

  96. Watanabe, A., and L. Stark. Kernel method for nonlinear analysis: identification of a biological control system.Math. Biosci. 27: 99–108, 1975.

    Article  Google Scholar 

  97. Wiener, N.,Nonlinear Problems in Random Theory. Cambridge, MA: MIT Press, 1958.

    Google Scholar 

  98. Barahona, M., and C.-S. Poon. Detection of nonlinear dynamics in short, noisy time series.Nature 381: 215–217, 1996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korenberg, M.J., Hunter, I.W. The identification of nonlinear biological systems: Volterra kernel approaches. Ann Biomed Eng 24, A250–A268 (1996). https://doi.org/10.1007/BF02648117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648117

Keywords

Navigation