Skip to main content
Log in

The influence of grain structure on the ductility of the al- cu- li- mn- cd alloy 2020

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of various grain structures, produced by thermomechanical treatments, on the monotonie tensile properties of the Al-Cu-Li-Mn-Cd alloy 2020 was investigated. Materials having a completely or partially recrystallized structure exhibit elongations between 4 and 8 pct when aged to peak strength. For both cases the low ductility is associated with (a) planar deformation, (b) random texture, (c) the presence of large intermetallic compounds along the recrystallized grain boundaries, and (d) precipitate free zones. The first three enhance crack nucleation at high angle grain boundaries, and subsequent crack propagation occurs along the precipitate free zones. The completely unrecrystallized materials have elongations between 10 and 13 pct in both longitudinal and transverse directions. The high ductility is associated with a sharp texture and a transgranular fracture mode. The maximum ductility is obtained by reducing the unrecrystallized grain size. The results of this study suggest that improved properties of a 2020-type alloy may be obtained by lowering the Fe and Si contents to remove coarse constituent phases, eliminating Cd, and replacing Mn with Zr in order to obtain a highly textured, unrecrystallized structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.E. Lewis, D. Webster, and I.G. Palmer: AFML Contract No. F33615-77-C-5186, Technical Report No. AFML-TR-78-102, July 1978.

  2. I.M. LeBarorr. USA Patent No. 2381 219, 1945.

  3. E. S. Balmuth and R. Schmidt:Aluminum-Lithium Alloys, T.H. Sanders, Jr. and E. A. Starke, Jr., eds., TMS-AIME, Warrendale,PA, 1981, p. 69.

    Google Scholar 

  4. H.K. Hardy and J.M. Silcock:J. Inst. Met., 1955-56, vol. 84, p. 423.

    Google Scholar 

  5. H.K. Hardy:J. Inst. Met., 1955-56, vol. 84, p. 429.

    Google Scholar 

  6. E. H. Spuhler: “Alcoa Alloy X2020,” Aluminum Company of America Green Letter, September 1958.

  7. K. Anderko and P. Wincierz:Aluminum, 1961, vol. 37, p. 593.

    Google Scholar 

  8. K. Anderko and P. Wincierz:Aluminum, 1961, vol. 37, p. 663.

    Google Scholar 

  9. Klaus Schneider and Manfred von Heimendahl:Z. Metallkunde, 1973, vol. 64, p. 342.

    CAS  Google Scholar 

  10. Klaus Schneider and Manfred von Heimendahl:Z.Metallkunde, 1973, vol. 63, p. 430.

    Google Scholar 

  11. . T. H. Sanders, Jr., E. A. Ludwiczak, and R. R. Sawtell:Mat. Sci. Engr., 1980, vol. 43, p. 247.

    Article  CAS  Google Scholar 

  12. F. S. Lin, S. B. Chakrabortty, and E. A. Starke, Jr.:Metall. Trans. A, 1982, vol. 13A, p. 401.

    CAS  Google Scholar 

  13. T.H. Sanders, Jr. and E.A. Starke, Jr.:Acta Met., 1982, vol. 30, p. 927.

    Article  CAS  Google Scholar 

  14. A. Gysler, R. Crooks, and E.A. Starke, Jr.:Aluminum-Lithium Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., TMS-AIME, Warrendale, PA, 1981, p. 263.

    Google Scholar 

  15. E. J. Coyne, Jr., T. H. Sanders, Jr., and E. A. Starke, Jr.:Aluminum-Lithium Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., TMS-AIME, Warrendale, PA, 1981, p. 293.

    Google Scholar 

  16. J. Waldman, H. Sulinski, and H. Markus:Metall. Trans., 1974, vol. 5, p. 573.

    Article  CAS  Google Scholar 

  17. John A. Wert, N. E. Paton, C. H. Hamilton, and M. W. Mahoney:Metall. Trans. A, 1981, vol. 12A, p. 1267.

    Google Scholar 

  18. M. Peters and G. Lütjering: Z.Metallkunde, 1976, vol. 67, p. 811.

    CAS  Google Scholar 

  19. G. Liitjering, T. Hamajima, and A. Gysler:Proc. 4th Intern. Conf. on Fracture, Waterloo, Canada, 1977, vol. 2, p. 7.

    Google Scholar 

  20. T.H. Sanders, Jr. and E.A. Starke, Jr.:Metall. Trans. A, 1976, vol. 7A, p. 1407.

    CAS  Google Scholar 

  21. E.A. Starke, Jr. and G. Liitjering:Fatigue and Microstructure, M. Meshii, ed., ASM, Metals Park, OH, 1979, p. 205.

    Google Scholar 

  22. T.H. Sanders, Jr.: Final Report, Naval Air Development Center, Warminster, PA, Contract No. N62269-76-C-0271.

  23. J.M. Silcock, T. J. Heal, and H.K. Hardy:J. Inst. Met., 1955-56, vol. 84, p. 23.

    CAS  Google Scholar 

  24. J.D. Boyd and R.B. Nicholson:Acta Met., 1971, vol. 19, p. 1379.

    Article  CAS  Google Scholar 

  25. P. R. Mould and P. Cotterill:J. Mat. Sci., 1967, vol. 2, p. 241.

    Article  CAS  Google Scholar 

  26. T. C. Rollason and J. W. Martin:J. Mat. Sci., 1970, vol. 5, p. 127.

    Article  CAS  Google Scholar 

  27. U. KostenMetal Sci., 1974, vol. 8, p. 151.

    Google Scholar 

  28. F. J. Humphreys:Acta Met., 1977, vol. 25, p. 1323.

    Article  CAS  Google Scholar 

  29. J. E. Hilliard:Recrystallization, Grain Growth and Textures, Harold Margolin, ed., ASM, Metals Park, OH, 1965, p. 267.

    Google Scholar 

  30. P. Cotterill and P. R. Mould:Recrystallization and Grain Growth in Metals, Univ. of Surrey Press, 1976, p. 180.

  31. Erik Nes.Acta Met., 1976, vol. 24, p. 391.

    Article  CAS  Google Scholar 

  32. I. L. Dillamore and W. T. Roberts:Acta Met., 1964, vol. 12, p. 281.

    Article  CAS  Google Scholar 

  33. R. E. Sanders, Jr. and E. A. Starke, Jr.:Mat. Sci. Eng., 1977, vol. 28, p. 53.

    Article  CAS  Google Scholar 

  34. L.E. Samuels:J. Inst. Met., 1955-56, vol. 84, p. 333.

    Google Scholar 

  35. Gerald M. Ludtka and David E. Laughlin:Metall. Trans. A, 1982, vol. 13A, p. 411.

    CAS  Google Scholar 

  36. R.E. Sanders, Jr. and E.A. Starke, Jr.: inThermomechanical Processing of Aluminum Alloys, James G. Morris, ed., TMS-AIME, Warrendale, PA, 1979, p. 50.

    Google Scholar 

  37. I.J. Polmear:Light Alloys, Metallurgy of the Light Metals, Edward Arnold Publishers, London, 1980.

    Google Scholar 

  38. H. W. Antes, S. Lipson, and H. Rosenthal:Trans. TMS-AIME, 1967, vol. 239, p. 1634.

    CAS  Google Scholar 

  39. N. Singh and M.C. Flemings:Trans. TMS-AIME, 1969, vol. 245, p. 1811.

    CAS  Google Scholar 

  40. H.W. Antes and H. Markus:Met. Eng. Quart., 1970, vol. 10, no. 4, p. 9.

    CAS  Google Scholar 

  41. R.H. Van Stone, R. H. Merchant, and J. R. Low, Jr.:Fatigue and Fracture Toughness-Cryogenic Behavior, C. F. Hickey, Jr. and R. G. Broadwell, eds., ASTM STP 556, 1974, p. 93.

  42. P. L. Morris and M. D. Ball:Recrystallization and Grain Growth of Multiphase and Particle Containing Materials, Ris0, L. L. Roskilde, Denmark, 1980, p. 85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starke, E.A., Lin, F.S. The influence of grain structure on the ductility of the al- cu- li- mn- cd alloy 2020. Metall Trans A 13, 2259–2269 (1982). https://doi.org/10.1007/BF02648396

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648396

Keywords

Navigation