Skip to main content
Log in

Mechanism of localized corrosion of 7075 alloy plate

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Investigation of localized corrosion in 7075 aluminum alloy plate shows that the mechanism of corrosion can be rationalized on the basis of potentiokinetic anodic polarization behavior. 7075 alloy in cold water quenched W temper has been shown to be susceptible to both pitting and intergranular corrosion. Aging to peak strength condition (T651 temper) increases the susceptibility to intergranular corrosion. The preferential anodic path is presumed to be solute enrichment (Zn and Mg) in the vicinity of grain boundaries. This is substantiated by the observation of two distinct pitting potentials in the anodic polarization curve for the T651 temper. Overaging to the T7351 temper decreases susceptibility, both by the reduction in the difference between the two pitting potentials and by the reduction in the amount of solute atoms segregated. Metallographic cross-sections of potentiostatically polarized specimens substantiate the proposed mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Galvele and S. M. de De Micheli:Corrosion Sci., 1970, vol. 10, p. 795.

    Article  CAS  Google Scholar 

  2. D. E. Davies, J. P. Dennison, and M. L. Mehta:International Conf. on Localized Corrosion, R. W. Staehle,et al, eds., pp. 608–13, National Association of Corrosion Engineers, Houston, TX, 1974.

    Google Scholar 

  3. P. Doig, P. E. J. Flewitt, and J. W. Edington:Corrosion, 1977, vol.33, no. 6, p. 217.

    CAS  Google Scholar 

  4. D. O. Sprowls and R. H. Brown:International Conference on Fundamental Aspects of Stress-Corrosion Cracking, R. W. Stahle,et al, eds., pp. 466–512, National Association of Corrosion Engineers, Houston, Texas, 1969.

    Google Scholar 

  5. K. Nisancioglu and H. Holtan:Corrosion Sci., 1978, vol. 18, p.835.

    Google Scholar 

  6. I. L. Muller and J. R. Galvele:Corrosion Sci., 1977, vol. 17, p. 995.

    Article  CAS  Google Scholar 

  7. D. O. Sprowls and B. W. Lifka:ASTM STP 516, p. 120, ASTM, Philadelphia, PA, 1972.

    Google Scholar 

  8. G. C. English, W. King, and E. H. Hollingsworth: Bureau of Naval Weapons Contract #W64-0170C, 1964.

  9. A. H. Roebuck and J. V. Luhan:Corrosion, 1967, vol. 23, no. 9, p.269.

    Google Scholar 

  10. S. C. Byrne: Alcoa Laboratories, Alcoa Center, PA, Unpublished Research, 1972.

  11. G. M. Ugianski: PhD. Dissertation, The Ohio State University, Columbus, OH, 1976.

  12. H. Böhni and H. H. Uhlig:J. Electrochem. Soc., 1969, vol. 116, p. 906.

    Article  Google Scholar 

  13. I. L. Muller and J. R. Galvele:Corrosion Science, 1977, vol. 17, p.179.

    Google Scholar 

  14. D. Adenis and A. Gilhaudis:Mem. Sci. Rev. Met., 1967, vol. 64, no. 10, p. 0.

    Google Scholar 

  15. S. Maitra and H. G. Paris: Alcoa Laboratories, Alcoa Center, PA, Unpublished Research, 1979.

  16. P. Doig and J. W. Edington:Corrosion, 1975 vol. 31, no. 10, p. 347.

    CAS  Google Scholar 

  17. J. A. S. Green, R. K. Viswanadham, T S. Sun, and W. G. Montague: Martin Marietta Corporation, Baltimore, Md., Technical Report to ONR, 1976 November.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maitra, S., English, G.C. Mechanism of localized corrosion of 7075 alloy plate. Metall Trans A 12, 535–541 (1981). https://doi.org/10.1007/BF02648553

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648553

Keywords

Navigation