Skip to main content
Log in

The effect of loading mode on hydrogen embrittlement

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Hydrogen embrittlement is shown to occur very easily in notched-round bars under opening modeI (tension) but not under antiplane shear modeIII (torsion). The stress tensor invariants under modeI,II, andIII loadings and how these affect interstitial diffusion are discussed. It is suggested that long range diffusion of hydrogen down orthogonal trajectories to the vicinity of the crack tip, which can occur under modeI but not modeIII, is a key part of any hydrogen embrittlement mechanism. This premise was evaluated with AISI 4340 steel heat treated to ultrahigh strength levels. It was found that an initial modeI stress intensity level of 17,000 psi-in.1/2 produced failure in several minutes. ModeIII stress intensity levels three times this produced no crack initiation in 300 min. Further analysis of the time-dependent hydrogen concentrating effect utilized a stress wave emission technique. This produced plausible critical hydrogen concentrations even though the present elastic analysis is a first order approximation of the stress field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Williams and H. G. Nelson:Met. Trans., 1971, vol. 2, p. 1987.

    CAS  Google Scholar 

  2. C. F. Barth and E. A. Steigerwald:Met. Trans., 1971, vol. 2, p. 1988.

    CAS  Google Scholar 

  3. R. A. Oriani:Fundamental Aspects of Stress Corrosion Cracking, p. 32, Na-tional Association of Corrosion Engineers,Houston, 1969.

    Google Scholar 

  4. H. W. Liu:J. Basic Eng., ASME, 1970, vol. 92, p. 633.

    CAS  Google Scholar 

  5. D. McLean:Grain Boundaries in Metals, p. 118, Oxford at the Clarendon Press, 1957.

  6. C. F. Barth and E. A. Steigerwald:Met. Trans., 1970, vol. 1, p. 3451.

    CAS  Google Scholar 

  7. C. E. Hartbower, W. W. Gerberich, and P. P. Crimmins:Welding J. Res. Supp., 1968, vol. 47, no. l,p. 1s.

    Google Scholar 

  8. A. J. Baker, F. J. Lauta, and R. P. Wei:Amer. Soc. Test. Mater. Special Tech. Publ. 370, 1965, p. 3.

    Google Scholar 

  9. W. F. Brown and J. E. Srawley:Amer. Soc. Test. Mater. Special Tech. Publ. 410, 1966.

  10. W. K. Wilson, W. G. Clark, Jr., and E. T.Wessel: Fracture Mechanics Technology for Combined Loading and Low-To-Intermediate Strength Metals, Westinghouse Research Lab., Contract DAAE 07-67-C-4021, November 1968.

  11. J. C. M. Li, R. A. Oriani, and L. S. Darken:Z. Physik. Chem., 1966, vol. 49, p. 271.

    CAS  Google Scholar 

  12. R. A. Oriani:Fundamental Aspects of Stress Corrosion Cracking, p. 49, Na-tional Assoc. of Corrosion Engineers, Houston, 1969; see also W. W. Gerberich and C. E. Hartbower, p. 426 ;M. Smialowski, p. 463.

    Google Scholar 

  13. P. C. Paris and G. C. Sih:Amer. Soc. Test. Mater. Special Tech. Publ. 381, 1965, p. 30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student and Lecturer, respectively, University of California, Berkeley

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, C.S., Gerberich, W.W. The effect of loading mode on hydrogen embrittlement. Metall Trans 4, 589–594 (1973). https://doi.org/10.1007/BF02648714

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648714

Keywords

Navigation