Skip to main content
Log in

The phase-field method: simulation of alloy dendritic solidification during recalescence

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An overview of the phase-field method for modeling solidification is given and results for nonisothermal alloy dendritic growth are presented. By defining a “phase-field” variable and a corresponding governing equation to describe the state (solid or liquid) in a material as a function of position and time, the diffusion equations for heat and solute can be solved without tracking the liquid-solid interface. The interfacial regions between liquid and solid involve smooth, but highly localized variations of the phase-field variable and the composition. Simple finite-difference techniques on a uniform mesh can be used to treat the evolution of complex growth patterns. However, large-scale computations are required. The method has been applied to a variety of problems, including thermally driven dendritic growth in pure materials, solute-driven isothermal dendritic growth in alloys, eutectic growth (all at high supercoolings or supersaturations), solute trapping at high velocity, and coarsening of liquid-solid mixtures. To include thermal effects in solute-driven dendritic growth in alloys, a simplified approach is presented here that neglects the spatial variation of temperature in the computational domain but provides for changes with time and thus includes recalescence. Growth morphologies and solute patterns in the liquid and solid obtained for several values of an imposed heat flux are compared to results for isothermal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Wheeler, W.J. Boettinger, and G.B. McFadden:Phys. Rev. A, 1992, vol. 45, pp. 7424–39.

    Article  CAS  Google Scholar 

  2. A.A. Wheeler, W.J. Boettinger, and G.B. McFadden:Phys. Rev. E, 1993, vol.47,pp. 1893–1909.

    Article  CAS  Google Scholar 

  3. W.J. Boettinger, A.A. Wheeler, B.T. Murray, and G.B. McFadden:Mater. Sci. Eng., 1994, vol. A178, pp. 217–23.

    Google Scholar 

  4. J.A. Warren and W.J. Boettinger:Acta Metall. Mater., 1995, vol. 43, pp. 689–703.

    Article  CAS  Google Scholar 

  5. G. Calginalp and W. Xie:Phys. Rev. E, 1993, vol. 48, pp. 1897–1909.

    Article  Google Scholar 

  6. J.A. Warren and B.T. Murray: unpublished research, NIST, Gaithersburg, MD 1994.

  7. A. Karma:Phys. Rev. E, 1994, vol. 49, pp. 2245–50.

    Article  CAS  Google Scholar 

  8. K.R. Elder, F. Drolet, J.M. Kosterlitz, and M. Grant:Phys. Rev. Lett, 1994, vol. 72, pp. 677–80.

    Article  CAS  Google Scholar 

  9. Misbah and D.E. Temkin:Phys. Rev. E., 1994, vol. 49, pp. 3159–65.

    Article  CAS  Google Scholar 

  10. A.A. Wheeler, G.B. McFadden, and W.J. Boettinger: NIST Int. Rpt. 5523,1994 (Avail. from NTIS).

  11. J.S. Langer: inDirections in Condensed Matter Physics, G. Grinstein and G. Mazenko, eds., World Scientific, Philadelphia, PA, 1986, pp. 165–86.

    Google Scholar 

  12. B.I. Halperin, P.C. Hohenburg, and S.-K. Ma:Phys. Rev. B, 1974, vol. 10, pp. 139–53.

    Article  CAS  Google Scholar 

  13. J.B. Collins and H. Levine:Phys. Rev. B, 1985, vol. 31, pp. 6119–22.

    Article  CAS  Google Scholar 

  14. G. Caginalp:Arch. Rat. Mech. Anal., 1986, vol. 92, pp. 205–45.

    Article  Google Scholar 

  15. G. Caginalp:Phys. Rev. A, 1989, vol. 39, pp. 5887–96.

    Article  Google Scholar 

  16. A.R. Umantsev and A.L. Roytburd:Sov. Phys. Solid State, 1988, vol. 30, pp. 651–55.

    Google Scholar 

  17. A.R. Umantsev:J. Chem. Phys., 1992, vol. 96, pp. 605–17.

    Article  CAS  Google Scholar 

  18. R. Kobayashi: inComputational Optimal Geometries, J. Taylor, ed., American Mathematical Society Providence, RI, 1991, pp. 24–25.

    Google Scholar 

  19. R. Kobayashi:PhysicaD, 1993, vol. 63,pp. 410–23.

    Google Scholar 

  20. R. Kobayashi:Exper. Math., 1994, vol. 3, pp. 59–81.

    Google Scholar 

  21. A.A. Wheeler, B.T. Murray, and R.J. Schaefer:PhysicaD, 1993, vol. 66, pp. 243–62.

    CAS  Google Scholar 

  22. B.T. Murray, W.J. Boettinger, G.B. McFadden, and A.A. Wheeler: inHeat Transfer in Melting, Solidification, and Crystal Growth, 1993, Iz S. Habib and S. Thynell, eds., ASME, New York, NY, 1993, pp. 67–76.

    Google Scholar 

  23. B.T. Murray, A.A. Wheeler, and M.E. Glicksman:J. Cryst. Growth, 1995, in press.

  24. Y. Saito, G. Goldbeck-Wood, and H. Müller-Krumbaar:Phys. Rev. A, 1988, vol. 38, pp. 2148–57.

    Article  Google Scholar 

  25. D. Juric and G. Tryggvason:J. Computational Phys., 1995, in press.

  26. J.M. Sullivan and H. Hao: inHeat Transfer in Melting, Solidification, and Crystal Growth, 1993, Iz S. Habib and S. Thynell, eds., ASME, New York, NY, 1993, pp. 14–19.

    Google Scholar 

  27. M.E. Rose:Math. Comp., 1960, vol. 14, pp. 249–56.

    Article  Google Scholar 

  28. A.B. Crowley and J.R. Ockendon:Int. J. Heat Mass Transfer, 1979, vol. 22, pp. 941–47.

    Article  CAS  Google Scholar 

  29. J. Crank:Free and Moving Boundary Problems, Oxford University Press, Oxford, United Kingdom, 1984, p. 217.

    Google Scholar 

  30. S.-L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Braun, and G.B. McFadden:Physica D, 1993, vol. 69, pp. 189–200.

    Article  CAS  Google Scholar 

  31. L.V. Mikeev and A.A. Chernov:J. Cryst. Growth, 1991, vol. 112, pp. 591–96.

    Article  Google Scholar 

  32. R. Evans:Adv. Phys., 1979, vol. 28, pp. 143–200.

    Article  CAS  Google Scholar 

  33. J.Q. Broughton, A. Bonissent, and F.F. Abraham:J. Chem Phys., 1981, vol. 74, pp. 4029–39.

    Article  CAS  Google Scholar 

  34. P.R. Harowell and D.W. Oxtoby:J. Chem. Phys., 1987, vol. 86, pp. 2932- 42.

    Article  Google Scholar 

  35. S.M. Allen and J.W. Cahn:Acta Metall., 1979, vol. 27, pp. 1085–95.

    Article  CAS  Google Scholar 

  36. G.B. McFadden, A.A. Wheeler, R.J. Braun, S.R. Coriell, and R.F. Sekerka:Phys. Rev. E, 1993, vol. 48, pp. 2016–24.

    Article  CAS  Google Scholar 

  37. R.J. Schaefer and M.E. Glicksman:J. Crys. Growth, 1969, vol. 5, pp. 44- 58.

    Article  CAS  Google Scholar 

  38. R.J. Braun, G.B. McFadden, and S.R. Coriell:Phys. Rev. E, 1994, vol. 49, pp. 4336–52.

    Article  CAS  Google Scholar 

  39. M.E. Glicksman and S.P. Marsh: inHandbook of Crystal Growth IB: Fundamentals, Transport and Stability, D.T. J. Hurle, ed., North-Holland, Amsterdam, 1993, pp. 1075–1122.

  40. S.-L. Wang: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1995.

  41. S.-L. Wang and R.F. Sekerka: Carnegie-Mellon University, Pittsburgh, PA, unpublished research, 1994.

  42. M.J. Aziz:J. Appl Phys., 1982, vol. 53, pp. 1158–68.

    Article  CAS  Google Scholar 

  43. M.J. Aziz and T. Kaplan:Acta Metall. Mater., 1988, vol. 8, pp. 2335–47.

    Article  Google Scholar 

  44. J.S. Langer and R.F. Sekerka:Acta Metall., 1975, vol. 23, pp. 1225–37.

    Article  CAS  Google Scholar 

  45. J.W. Cahn:Trans. TMS-AIME, 1968, vol. 242, pp. 166–80.

    CAS  Google Scholar 

  46. J.E. Hilliard: inPhase Transformations, ASM INTERNATIONAL, Metals Park, OH, 1970, pp. 497–560.

    Google Scholar 

  47. M. RappazandP. Thevoz:Acta Metall., 1987, vol. 35, pp. 1487–97.

    Article  Google Scholar 

  48. M. Rappaz:Int. Met. Rev., 1989, vol. 34, pp. 93–123.

    CAS  Google Scholar 

  49. B. Giovanola and W. Kurz,Metall. Trans. A, 1990, vol. 21A, pp. 260–63.

    CAS  Google Scholar 

  50. W.J. Boettinger, L.A. Bendersky, S.R. Coriell, R.J. Schaefer, and F.S. Biancaniello:J. Cryst. Growth, 1987, vol. 80,pp. 17–25.

    Article  CAS  Google Scholar 

  51. H.D. Brody and M.C. Flemings:Trans. TMS-AIME, 1966, vol. 236, p. 615.

    CAS  Google Scholar 

  52. S. Kobayashi:J. Cryst. Growth, 1988, vol. 88, pp. 87–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made at the “Analysis and Modeling of Solidification” symposium as part of the 1994 Fall meeting of TMS in Rosemont, Illinois, October 2–6, 1994, under the auspices of the TMS Solidification Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boettinger, W.J., Warren, J.A. The phase-field method: simulation of alloy dendritic solidification during recalescence. Metall Mater Trans A 27, 657–669 (1996). https://doi.org/10.1007/BF02648953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648953

Keywords

Navigation