Skip to main content
Log in

Novel oxide-dispersion-strengthened copper alloys from rapidly solidified precursors: Part 1. Microstructural development

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

ZrO2, Y2O3, and rare earth oxides with related structures are attractive candidates for dispersion strengthening of copper alloys but pose significant processing challenges owing to the low solubility of the oxide-forming elements in Cu. It is shown that the problems may be circumvented by a synthesis approach coupling rapid solidification and internal oxidation, followed by standard powder metallurgy consolidation. Cu-Zr and Cu-Y alloys were melt spun into ribbons ∼-50-to 150-Μm thick and internally oxidized at 1023 to 1223 K to yield ∼1 vol pct of ZrO2 or Y2O3 particles ranging in size from 5 nm up to ∼3150 nm. The coarser oxides result from direct oxidation of the intermetallic segregate, whereas the finer ones are generated by a dissolution-reprecipitation process. The relative proportions of fine and coarse oxides and the homogeneity of the distribution are related to segregation scale in the melt-spun ribbon and the relative permeabilities of oxygen and the oxidizable element in the alloy, which depend on the internal oxidation temperature. The oxide dispersoids were mostly cubic zirconia or cubic yttria and exhibited predominantly cube-on-cube orientation relationships with the matrix. Analysis of particle shapes revealed that the dominant interfaces are of the type {001}OX ∥ {001}Cu and {1¯11}OX ∥ {1¯11}Cu and could be explained by image charge interaction concepts. Extrusion produced an elongated grain structure but no significant changes in the oxide distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Nadkarni, E. Klar, and W.M. Shafer:Met. Eng. Q., 1976, pp. 10–15.

  2. A.V. Nadkarni: inHigh Conductivity Copper and Aluminum Alloys, E. Ling and P.W. Taubenblat, eds., TMS-AIME, Warrendale, PA, 1984, pp. 77–101.

    Google Scholar 

  3. N.J. Grant, A. Lee, and M. Lou: inHigh Conductivity Copper and Aluminum Alloys, E. Ling and P.W. Taubenblat, eds., TMS-AIME, Warrendale, PA, 1984, pp. 103–17.

    Google Scholar 

  4. J.L. Meijering and M.J. Druyvesteyn:Phil. Res. Rep., 1947, vol. 2, pp. 260–80.

    CAS  Google Scholar 

  5. N. Komatsu and N.J. Grant:Trans. TMS-AIME, 1962, vol. 224, pp. 705–13.

    CAS  Google Scholar 

  6. J.H. Swisher and E.O. Fuchs:Trans. TMS-AIME, 1969, vol. 245, pp. 1789–94.

    CAS  Google Scholar 

  7. J.H. Swisher and E.O. Fuchs:J. Inst. Met., 1970, vol. 98, pp. 129–33.

    CAS  Google Scholar 

  8. W. Scheithauer, Jr., R.F. Cheney, and N.E. Kopatz: inModern Developments in Powder Metallurgy, H.H. Hausner, ed., Plenum Press, New York, NY, 1971, vol. 5, pp. 149–58.

    Google Scholar 

  9. H. Schreiner and H. Ohmann: inModern Developments in Powder Metallurgy, H.H. Hausner, ed., Plenum Press, New York, NY, 1971, pp. 125–36.

    Google Scholar 

  10. R.S.W. Shewfelt and L.M. Brown:Phil. Mag., 1974, vol. 30, p. 1135.

    Article  CAS  Google Scholar 

  11. J. Rösier and E. Arzt:Acta Metall. Mater., 1990, vol. 38, pp. 671–83.

    Article  Google Scholar 

  12. M.S. Nagorka, C.G. Levi, G.E. Lucas, and S.D. Ridder:Mater. Sci. Eng., 1991, vol. A142, pp. 277–89.

    CAS  Google Scholar 

  13. M.S. Nagorka, G.E. Lucas, and C.G. Levi:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 873–81.

    CAS  Google Scholar 

  14. F.N. Rhines, W.A. Johnson, and W.A. Anderson:Trans. TMS-AIME, 1942, vol. 147, pp. 205–21.

    Google Scholar 

  15. D. Arias and J.P. Abriata: inBinary Alloy Phase Diagrams, T.B. Massalski, ed., ASM INTERNATIONAL, Metals Park, OH, 1990, p. 1511.

    Google Scholar 

  16. D.J. Chakrabarti and D.E. Laughlin:Bull. Alloy Phase Diagrams, 1981, vol. 2 (3), pp. 315–19.

    Google Scholar 

  17. K.A. Jackson, J.D. Hunt, D.R. Uhlman, and T.P. Seward III:Trans. TMS-AIME, 1966, vol. 236, p. 149.

    CAS  Google Scholar 

  18. S.C. Flood and J.D. Hunt:J. Cryst. Growth, 1987, vol. 82, pp. 552–60.

    Article  CAS  Google Scholar 

  19. M. Rappaz and Ch.-A. Gandin:Acta Metall. Mater., 1993, vol. 41 (2), pp. 345–60.

    Article  CAS  Google Scholar 

  20. R.L. Pastorek and R.A. Rapp:Trans. TMS-AIME, 1969, vol. 245, pp. 1711–20.

    CAS  Google Scholar 

  21. H.S. Carslaw and J.C. Jaeger:Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford, United Kingdom, 1959, p. 200.

    Google Scholar 

  22. J.H. Swisher: inOxidation in Metals and Alloys, ASM, Metals Park, OH, 1970, pp. 235–67.

    Google Scholar 

  23. V. Lanteri, A.H. Heuer, and T.E. Mitchell: inScience and Technology of Zirconia II, N. Claussen, M. Rühle, and A. Heuer, eds., American Ceramics Society, Columbus, OH, 1984, pp. 118–30.

    Google Scholar 

  24. F. Ernst:MRS Symp. Proc, 1990, vol. 183, pp. 49–54.

    CAS  Google Scholar 

  25. F. Ernst, P. Pirouz, and A.H. Heuer:Phil. Mag. A, 1991, vol. 63, pp. 259–77.

    Article  CAS  Google Scholar 

  26. H.J. Fecht and H. Gleiter:Acta Metall., 1985, vol. 33, pp. 557–62.

    Article  CAS  Google Scholar 

  27. D.M. Williams and G.C. Smith: inOxide Dispersion Strengthening, G.S. Ansell, T.D. Cooper, and F.V. Lenel, eds., Gordon and Breach, New York, NY, 1968, pp. 509–36.

    Google Scholar 

  28. G. Necker and W. Mader:Phil. Mag. Lett., 1988, vol. 58, pp. 205–12.

    Article  CAS  Google Scholar 

  29. Y. Gao and K.L. Merkle:J. Mater. Res., 1990, vol. 5, pp. 1995–2003.

    CAS  Google Scholar 

  30. T. Muschik: inMetal/Ceramic Interfaces In Internally Oxidized Pd-Al Alloys, Internal Report, Materials Department, University of California, Santa Barbara, CA, 1990.

    Google Scholar 

  31. A.M. Stoneham and P.W. Tasker:J. Phys., 1988, vol. C5, pp. 99–113.

    Google Scholar 

  32. V. Jayaram, M. De Graef, and C.G. Levi:Acta Metall. Mater., 1994, vol. 42 (6), pp. 1829–46.

    Article  CAS  Google Scholar 

  33. J.P. A. Löfvander and C.G. Levi: University of California, Santa Barbara, CA, unpublished research, 1993.

Download references

Author information

Authors and Affiliations

Authors

Additional information

MICHAEL S. NAGORKA, formerly Graduate Research Assistant, High Performance Composites Center, Materials Department, College of Engineering, University of California at Santa Barbara

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagorka, M.S., Levi, C.G. & Lucas, G.E. Novel oxide-dispersion-strengthened copper alloys from rapidly solidified precursors: Part 1. Microstructural development. Metall Mater Trans A 26, 859–871 (1995). https://doi.org/10.1007/BF02649083

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649083

Keywords

Navigation