Skip to main content
Log in

Fatigue crack growth in MAR-M200 single crystals

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effects of crystallographic orientation on the fatigue crack growth behavior of MAR-M200* single crystals were examined. Using compact-tension specimens tested at 20 Hz, fatigue crack growth rates were determined at ambient temperature at minimum stress to maximum stress ratios,R, of 0.1 and 0.5. In most cases, subcritical crack growth occurred either along a single {111} slip plane or a combination of {111} planes. The mode of cracking was generally mixed and contained mode I, II, and III components. Considerable crack deflection and branching were also observed. Some fracture surfaces were found to contain a significant amount of asperities and, in some specimens, black debris. Based on Auger spectroscopic analyses and the fracture surface appearance, it appears that the black debris represented oxides formed due to rubbing of the fracture surfaces. Using stress intensity solutions obtained based on the Boundary-Integral-Equation technique, an effective ΔK was successfully used for correlating the crack growth rate data. The results indicate that the effect of crystallographic orientation on crack growth rate can be explained on the basis of crack deflection, branching, and roughness-induced crack closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Gell, D. N. Duhl, and A. F. Giamei: in Superalloys 1980,Proceedings of the Fourth Int. Sym. on Superalloys, ASM International, Metals Park, OH, 1980, pp. 205–14.

    Google Scholar 

  2. G. R. Leverant and B. H. Kear:Metall. Trans., 1970, vol. 1, pp. 491–98.

    Article  CAS  Google Scholar 

  3. D. P. DeLuca and B. A. Cowles: AFWAL-TR-84-4167, 1984.

  4. M. Gell and G. R. Leverant:Trans. AIME, 1968, vol. 242, pp. 1869–79.

    Google Scholar 

  5. G. R. Leverant and M. Gell:Trans. AIME, 1969, vol. 245, pp. 1167–73.

    CAS  Google Scholar 

  6. G. R. Leverant and M. Gell:Metall. Trans. A, 1975, vol. 6A, pp. 367–71.

    Article  CAS  Google Scholar 

  7. D. L. Anton:Acta Metall., 1984, vol. 32, pp. 1669–79.

    Article  CAS  Google Scholar 

  8. P. J. E. Forsyth:Proc. of the Crack Propagation Symposium, Cranfield, 1961, vol. I, pp. 76–94.

    Google Scholar 

  9. G. R. Leverant, T. E. Strangman, and B. S. Langer:Superalloys: Metallurgy and Manufacture, Claitor’s Publishing Division, Baton Rouge, LA, 1976, pp. 285–95.

    Google Scholar 

  10. J.S. Crompton and J. W. Martin:Metall. Trans. A, 1984, vol. 15A, pp. 1711–19.

    Article  CAS  Google Scholar 

  11. M. A. Hicks and C. W. Brown:Fatigue 84, C. J. Beevers, ed., Engineering Materials Advisory Services, Ltd., Cradley Heath, U.K., 1984, vol. 3, pp. 1337–47.

    Google Scholar 

  12. ASTM E-647: Annual Book of ASTM Standard, ASTM, Philadelphia, PA, 1983, pp. 710-30.

  13. M. D. Snyder and T. A. Cruse:Int. J. Fracture, 1975, vol. 11, pp. 315–28.

    Article  Google Scholar 

  14. T. A. Cruse:Applied Mathematical Modeling, 1978, vol. 2, pp. 287–93.

    Article  Google Scholar 

  15. K. S. Chan and T. A. Cruse:Engineering Fracture Mechanics, 1986, vol. 23, pp. 863–74.

    Article  Google Scholar 

  16. K. S. Chan, J. E. Hack, and G. R. Leverant:Metall. Trans. A, 1986, vol. 17A, pp. 1739–50.

    Article  Google Scholar 

  17. M. D. Peach and J. S. Koehler:Phys. Rev., 1950, vol. 80, pp. 436–39.

    Article  Google Scholar 

  18. G. P. Cherepanov:Mechanics of Brittle Fracture, McGraw-Hill, New York, NY, 1979, pp. 71–78.

    Google Scholar 

  19. P. C. Paris and G. C. Sih: inFracture Toughness Testing and Its Application, ASTM STP 381, ASTM, Philadelphia, PA, 1965, pp. 30–83.

    Book  Google Scholar 

  20. G. C. Sih and H. Liebowitz: inFracture, H. Liebowitz, ed., Academic Press, New York, NY, 1968, vol. 2, pp. 67–190.

    Google Scholar 

  21. D. A. Koss and K. S. Chan:Acta Metall., 1980, vol. 28, pp. 1245–52.

    Article  CAS  Google Scholar 

  22. D. A. Koss and K. S. Chan: inDislocation Modeling of Physical Systems, Pergamon Press, Oxford, U.K., 1981, pp. 18–22.

    Book  Google Scholar 

  23. K. S. Chan:Acta Metall., 1986, in press.

  24. S. Suresh:Metall Trans. A, 1985, vol. 16A, pp. 249–60.

    Article  CAS  Google Scholar 

  25. S. Suresh and R. O. Ritchie:Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with Southwest Research Institute

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S., Hack, J.E. & Leverant, G.R. Fatigue crack growth in MAR-M200 single crystals. Metall Trans A 18, 581–591 (1987). https://doi.org/10.1007/BF02649474

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649474

Keywords

Navigation