Skip to main content
Log in

The inter-relationship between grain boundary sliding and cavitation during creep of polycrystalline copper

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-temperature creep tests were conducted on polycrystalline copper of commercial purity in order to investigate the inter-relationship between the extent and the rate of grain boundary sliding (GBS) and the development of internal cavitation. An image processing technique was used to provide quantitative information on the size and shape of the cavities formed over a range of stresses and at temperatures from 673 to 873 K. The results demonstrate that cavity development is inhomogeneous within any specimen, such that there is an increase in the level of cavitation in regions of higher local strain. It is shown by quantitative measurements that the total cavitated area increases at the faster sliding rates, but the number density of cavities decreases at the highest sliding rates because of cavity interlinkage. When interlinkage is taken into account, the results confirm that the overall level of cavitation is related to the occurrence of GBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Bell and T.G. Langdon: inInterfaces Conference, R.C. Gifkins, ed., Butterworth and Co., Sydney, 1969, pp. 115–37.

    Google Scholar 

  2. H. Gleiter and B. Chalmers:Prog. Mater. Sci., 1972, vol. 16, pp. 179–217.

    Article  Google Scholar 

  3. T.G. Langdon and R.B. Vastava: inMechanical Testing for Deformation Model Development, ASTM STP 765, R.W. Rhode and J.C. Swearengen, eds., ASTM, Philadelphia, PA, 1982, pp. 435–51.

    Google Scholar 

  4. W.R. Cannon:Phil. Mag., 1972, vol. 25, pp. 1489–97. 5. F.R.N. Nabarro: in Report of a Conference on Strength of Solids, The Physical Society, London, 1948, pp. 75-90.

    Article  Google Scholar 

  5. C. Herring:J. Appl. Phys., 1950, vol. 21, pp. 437–45.

    Article  Google Scholar 

  6. R.L. Coble:J. Appl. Phys., 1963, vol. 34, pp. 1679–82.

    Article  Google Scholar 

  7. I.M. Lifshitz:Sov. Phys. JETP, 1963, vol. 17, pp. 909–20.

    Google Scholar 

  8. W.A. Rachinger:J. Inst. Met., 1952-53, vol. 81, pp. 33–41.

    CAS  Google Scholar 

  9. T.G. Langdon:Acta Metall. Mater., 1994, vol. 42, pp. 2437–43.

    Article  CAS  Google Scholar 

  10. R.C. Gifkins:Acta Metall., 1956, vol. 4, pp. 98–99.

    Article  Google Scholar 

  11. C.W. Chen and E.S. Machlin:Acta Metall., 1956, vol. 4, pp. 655–56.

    Article  Google Scholar 

  12. Y. Ishida and D. McLean:Met. Sci. J., 1967, vol. 1, pp. 171–72.

    Article  Google Scholar 

  13. H.E. Evans:Met. Sci. J., 1969, vol. 3, pp. 33–38.

    Article  Google Scholar 

  14. P.W. Davies and K.R. Williams:Met. Sci. J., 1969, vol. 3, pp. 48–50.

    Article  Google Scholar 

  15. V. Sklenička, I. Saxl, J. Čadek, and P. Ryš:Res. Mechanica, 1980, vol. l,pp. 301–17.

    Google Scholar 

  16. Y. Ma, X. Zhao, and T.G. Langdon: inProc. 4th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., The Institute of Metals, London, 1990, pp. 199- 208.

    Google Scholar 

  17. S.-A. Shei and T.G. Langdon:J. Mater. Sci., 1978, vol. 13, pp. 1084–92.

    Article  CAS  Google Scholar 

  18. I. Saxl, V. Sklenička, and J. Čadek:Z. Metallkd., 1981, vol. 72, pp. 499–503.

    CAS  Google Scholar 

  19. A.H. Chokshi and T.G. Langdon:Acta Metall. Mater., 1990, vol. 38, pp. 867–77.

    Article  CAS  Google Scholar 

  20. S.V. Raj and T.G. Langdon:Acta Metall., 1989, vol. 37, pp. 843–52.

    Article  CAS  Google Scholar 

  21. R.L. Bell and T.G. Langdon:J. Mater. Sci., 1967, vol. 2, pp. 313–23.

    Article  CAS  Google Scholar 

  22. R.L. Bell, C. Graeme-Barber, and T.G. Langdon:Trans. AIME, 1967, vol. 239, pp. 1821–24.

    CAS  Google Scholar 

  23. T.G. Langdon:Metall. Trans., 1972, vol. 3, pp. 797–801.

    Article  CAS  Google Scholar 

  24. S.V. Raj and T.G. Langdon:Acta Metall. Mater., 1991, vol. 39, pp. 1823–32.

    Article  CAS  Google Scholar 

  25. A. Ayensu and T.G. Langdon: University of Southern California, Los Angeles, CA, unpublished research, 1994.

  26. T.G. Langdon:Mater. Sci. Eng., 1993, vol. A166, pp. 67–79.

    CAS  Google Scholar 

  27. S.V. Raj and T.G. Langdon:Acta Metall. Mater., 1991, vol. 39, pp. 1817–22.

    Article  CAS  Google Scholar 

  28. Y. Ishida, A.W. Mullendore, and N.J. Grant:Trans. AIME, 1965, vol. 233, pp. 204–12.

    Google Scholar 

  29. R.L. Bell and C. Graeme-Barber:J. Mater. Sci., 1970, vol. 5, pp. 933- 44.

    Google Scholar 

  30. A.H. Chokshi and T.G. Langdon:Acta Metall., 1987, vol. 35, pp. 1089–1101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Department of Physics, University of Cape Coast, Cape Coast, Ghana

This article is based on a presentation made at the “High Temperature Fracture Mechanisms in Advanced Materials” sympsosium as a part of the 1994 Fall meeting of TMS, October 2-6, 1994, in Rosemont, Illinois, under the auspices of the ASM/SMD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayensu, A., Langdon, T.G. The inter-relationship between grain boundary sliding and cavitation during creep of polycrystalline copper. Metall Mater Trans A 27, 901–907 (1996). https://doi.org/10.1007/BF02649757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649757

Keywords

Navigation