Skip to main content
Log in

Ostwald ripening in ternary alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A theory of coarsening in an isothermal, ternary alloy is developed in an effort to understand the effects of a third chemical component on the ripening behavior of a two-phase system. The analysis is valid for a general, nonideal, nondilute solution, but is limited to extremely small volume fractions of the coarsening phase and neglects off-diagonal terms in the diffusion matrix. The Gibbs-Thompson equation in a ternary system undergoing coarsening reveals that the concentrations at the particle/matrix interface are dependent on the far-field supersaturations as well as on the particle radius. In addition, the capillary length depends on the diffusivities of the two components. An asymptotic analysis shows that the exponents of the temporal power laws for the average particle radius, number of particles per unit volume, and the matrix supersaturations are the same as that found in the binary limit; however, the amplitudes of the power laws are modified. We find that the trajectory of the matrix supersaturation must lie along a tie-line, but the trajectory of the particle composition does not. An expression for the effect of dilute ternary additions to the coarsening rate of a binary alloy is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Ostwald:Z Phys. Chem., 1901, vol. 37, p. 385.

    Google Scholar 

  2. W. Ostwald:Analytisch Chemie, Englemann, Leipzig, 1901.

    Google Scholar 

  3. I.M. Lifshitz and V.V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  4. C. Wagner:Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  5. P.W. Voorhees:J. Status Phys., 1985, vol. 38, pp. 231–52.

    Article  Google Scholar 

  6. D.E. Coates:Metall. Trans., 1972, vol. 3, pp. 1203–12.

    Article  CAS  Google Scholar 

  7. D.E. Coates:Metall. Trans., 1973, vol. 4, pp. 1077–86.

    CAS  Google Scholar 

  8. S. Björklund, L.F. Donaghey, and M. Hillert:Acta Metall., 1972, vol. 20, pp. 867–74.

    Article  Google Scholar 

  9. V.V. Slyozov and V.V. Sagalovich:Sov. Phys. Solid State, 1975, vol. 17, pp. 974–75.

    Google Scholar 

  10. V.V. Slyozov and V.V. Sagalovich:J. Phys. Chem. Solids, 1977, vol. 38, pp. 943–48.

    Article  Google Scholar 

  11. V.V. Slyozov and V.V. Sagalovich:Sov. Phys. Usp., 1987, vol. 30, p. 23.

    Article  Google Scholar 

  12. A. Umantsev and G.B. Olson:Scripta Metall., 1993, vol. 29, pp. 1135–40.

    Article  CAS  Google Scholar 

  13. J.E. Morral and G.R. Purdy:Scripta Metall., 1994, vol. 30, pp. 905–08.

    Article  CAS  Google Scholar 

  14. J.E. Morral and G.R. Purdy:Journal of Alloys and Compounds, 1995, vol. 220, pp. 132–35.

    Article  CAS  Google Scholar 

  15. H.A. Calderon, P.W. Voorhees, J.L. Murray, and G. Kostorz:Acta Metall., 1994, vol. 42, p. 991.

    Article  CAS  Google Scholar 

  16. J.A. Marqusee and J. Ross:J. Chem. Phys., 1983, vol. 79, pp. 373–78.

    Article  CAS  Google Scholar 

  17. P.W. Voorhees:Metall. Trans. A, 1990, vol. 21A, pp. 27–37.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuehmann, C.J., Voorhees, P.W. Ostwald ripening in ternary alloys. Metall Mater Trans A 27, 937–943 (1996). https://doi.org/10.1007/BF02649761

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649761

Keywords

Navigation