Skip to main content
Log in

Austenite decomposition during continuous cooling of an HSLA-80 plate steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Decomposition of fine-grained austenite (10-µm grain size) during continuous cooling of an HSLA-80 plate steel (containing 0.05C, 0.50Mn, 1.12Cu, 0.88Ni, 0.71Cr, and 0.20Mo) was evaluated by dilatometric measurements, light microscopy, scanning electron microscopy, transmission electron microscopy, and microhardness testing. Between 750 °C and 600 °C, austenite transforms primarily to polygonal ferrite over a wide range of cooling rates, and Widmanstätten ferrite sideplates frequently evolve from these crystals. Carbon-enriched islands of austenite transform to a complex mixture of granular ferrite, acicular ferrite, and martensite (all with some degree of retained austenite) at cooling rates greater than approximately 5 °C/s. Granular and acicular ferrite form at temperatures slightly below those at which polygonal and Widmanstätten ferrite form. At cooling rates less than approximately 5 °C/s, regions of carbon-enriched austenite transform to a complex mixture of upper bainite, lower bainite, and martensite (plus retained austenite) at temperatures which are over 100 °C lower than those at which polygonal and Widmanstätten ferrite form. Interphase precipitates of copper form only in association with polygonal and Widmanstätten ferrite. Kinetic and microstruc-tural differences between Widmanstätten ferrite, acicular ferrite, and bainite (both upper and lower) suggest different origins and/or mechanisms of formation for these morphologically similar austenite transformation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1995 Annual Book of ASTM Standards ASTM Designation A710, ASTM, Philadelphia, PA, 1995, vol. 01.04, pp. 354–56.

  2. 1995 Annual Book of ASTM Standards, ASTM Designation A736, ASTM, Philadelphia, PA, 1995, vol. 01.04, pp. 379–81.

  3. 1995 Annual Book of ASTM Standards, ASTM Designation A707, ASTM, Philadelphia, PA, 1995, vol. 01.01, pp. 511–16.

  4. T.W. Montemarano, B.P. Sack, J.P. Gudas, M.G. Vassilaros, and H.H. Vanderveldt:J. Ship Prod., 1986, vol. 2, pp. 145–62. 5. P.P. Hydrean, J.E. Chard, and C.H. Shelton: in Mechanical Working and Steel Processing X, F.E. Richardson, L. Mair, J.D. Grozier, and A.J. Scheel, eds., AIME, New York, NY, 1972, pp. 211–36.

    Google Scholar 

  5. A.D. Wilson:J. Met., 1987, vol. 39 (3), pp. 36–38.

    CAS  Google Scholar 

  6. R.A. DePaul and A.L. Kitchin:Metall. Trans., 1970, vol. 1, pp. 389–93.

    CAS  Google Scholar 

  7. P.P. Hydrean, A.L. Kitchin, and F.W. Schaller:Metall. Trans., 1971, vol. 2, pp. 2541–48.

    Article  CAS  Google Scholar 

  8. E. Snape:Metall. Trans., 1970, vol. 1, pp. 1375–82.

    CAS  Google Scholar 

  9. J.M. Round, E.K. Zehme, and G.P. Miller:Iron and Steel, 1972, vol. 45, pp. 502–14.

    CAS  Google Scholar 

  10. R.J. Jesseman and G.J. Murphy:Ind. Heat, 1979, vol. 46 (9), pp. 27–32.

    Google Scholar 

  11. M.T. Miglin, J.P. Hirth, and A.R. Rosenfield:Metall. Trans. A, 1983, vol. 14A, pp. 2055–61.

    CAS  Google Scholar 

  12. RJ. Jesseman and G.J. Murphy:J. Heat Treat, 1984, vol. 3, pp. 228- 36.

    Google Scholar 

  13. G.E. Hicho, C.H. Brady, L.C. Smith, and R.J. Fields:J. Heat Treat, 1987, vol. 5, pp. 7–19.

    CAS  Google Scholar 

  14. G.R. Speich and T.M. Scoonover: inProcessing, Microstructure and Properties of HS LA Steels, A.J. DeArdo, ed., TMS, Warrendale, PA, 1988, pp. 263–86.

    Google Scholar 

  15. G.E. Hicho, S. Singhal, L.C. Smith, and R.J. Fields:J. Heat Treat, 1984, vol. 3, pp. 205–12.

    CAS  Google Scholar 

  16. A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson, and G. Krauss: inMicroalloyed HSLA Steels, ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 259–75.

    Google Scholar 

  17. R.J. Jesseman and G.C. Schmid:Weld. J., 1983, vol. 62, pp. 321s- 330s.

    Google Scholar 

  18. W. Bolliger, R. Varughese, E. Kaufmann, W.-F. Qin, A.W. Pense, and R.D. Stout: inMicroalloyed HSLA Steels, ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 277–90.

    Google Scholar 

  19. N.J. Smith, J.T. McGrath, J.A. Gianetto, and R.F. Orr:Weld. J., 1989, vol. 68, pp. 112s-120s.

    Google Scholar 

  20. J.P. Balaguer, Z. Wang, and E.F. Nippes:Weld. J., 1989, vol. 68, pp. 121s-131s.

    Google Scholar 

  21. C.D. Lundin, R. Menon, and J.M. Lawson:Weld. J., 1989, vol. 68, pp. 467s-472s.

    Google Scholar 

  22. S.P. Abeln, G.S. Huppi, E.L. Brown, D.K. Matlock, and G.R. Edwards: inMicrostructural Science, M.R. Louthan, Jr., I. LeMay, and G.F.Vander Voort, eds., IMS, Metals Park, OH, 1987, pp. 99–114.

    Google Scholar 

  23. M.T. Miglin, J.P. Hirth, A.R. Rosenfield, and W.A.T. Clark:Metall. Trans. A, 1986, vol. 17A, pp. 791–98.

    CAS  Google Scholar 

  24. R. Krishnadev, L.R. Cutler, M.C. Cheresh, D.R. Ireland, and J.E. Green: inMicrostructural Science, R.T. DeHoff, J.D. Braun, and J.L.McCall, eds., Elsevier, New York, NY, 1983, vol. 11, pp. 63–76.

    Google Scholar 

  25. D.J. Colvin: Master's Thesis, Colorado School of Mines, Golden, CO, 1988.

    Google Scholar 

  26. S.W. Thompson, D.J. Colvin, and G. Krauss:Metall. Trans. A, 1990, vol. 21A, pp. 1493–1507.

    CAS  Google Scholar 

  27. S.W. Thompson and G. Krauss:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1569–84.

    Google Scholar 

  28. S.W. Thompson and G. Krauss: inProc. 47th Annual Meeting of Electron Microscopy Society of America, G.W. Bailey, ed., San Francisco Press, Inc., San Francisco, CA, 1989, pp. 282–83.

    Google Scholar 

  29. H.I. Aaronson: inDecomposition of Austenite by Diffusional Processes, V.F. Zackay and H.l. Aaronson, eds., Interscience Publishers, New York, NY, 1962, pp. 387–548.

    Google Scholar 

  30. D.L. Williamson, K. Nakazawa, and G. Krauss:Metall. Trans. A, 1979, vol. 10A, pp. 1351–63.

    CAS  Google Scholar 

  31. J.M. Oblak and R.F. Hehemann: inTransformation and Hardenability in Steels, Climax Molybdenum Company, Ann Arbor, MI, 1967, pp. 15–38.

    Google Scholar 

  32. Y.A. Bagaryatsky:Dokl. Akad. Nauk. SSSR, 1950, vol. 73, pp. 1161- 64.

    Google Scholar 

  33. H.I. Aaronson: inThe Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals, London, 1969, pp. 270–81.

    Google Scholar 

  34. M. Hillert: inDecomposition of Austenite by Diffusional Processes, V.F. Zackay and H.l. Aaronson, eds., Interscience Publishers, New York, NY, 1962, pp. 197–247.

    Google Scholar 

  35. S.W. Thompson and P.R. Howell:Scripta Metall., 1988, vol. 22, pp. 1175–78.

    Google Scholar 

  36. G. Krauss and S.W. Thompson:Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 937–45.

    CAS  Google Scholar 

  37. H.I. Aaronson and C. Wells:Trans. AIME, 1956, vol. 206, pp. 1216- 23.

    Google Scholar 

  38. M. Kumar, C. Tseng, G. Krauss, and S.W. Thompson: Colorado School of Mines, Golden, CO, unpublished research, 1994–96.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Metallurgical and Materials Engineering, Colorado School of Mines.

This article is based on a presentation made during TMS/ASM Materials Week in the symposium entitled “Atomistic Mechanisms of Nucleation and Growth in Solids,” organized in honor of H.I. Aaronson’s 70th Anniversary and given October 3–5, 1994, in Rosemont, Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, S.W., Colvin, D.J. & Krauss, G. Austenite decomposition during continuous cooling of an HSLA-80 plate steel. Metall Mater Trans A 27, 1557–1571 (1996). https://doi.org/10.1007/BF02649815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649815

Keywords

Navigation