Skip to main content
Log in

Flow stress and microstructural evolution during hot working of alloy 22cr-13ni-5mn-0.3n austenitic stainless steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The stress-strain behavior and the development of microstructure between 850 °C and 1150 °C in an austenitic stainless steel, 22Cr-13Ni-5Mn-0.3N, were investigated by uniaxial compression of cylindrical specimens at strain rates between 0.01 and 1 s-1 up to a strain of one. The measured (anisothermal) and corrected (isothermal) flow curves were distinctly different. The flow stress at moderate hot working temperatures, compared to a number of other austenitic alloys, was second only to that of alloy 718. Both static and dynamic recrystallization were observed. Recrystallization was sluggish in comparison to alloy 304L, apparently due to the presence of a fine Cr- and Nb-rich second-phase dispersion, identified as Z phase, which tended to pin the high-angle grain boundaries even at a high temperature of 1113 °C. Recrystallization may also be retarded by preferential res-toration through the competitive process of recovery, which is consistent with the relatively high stacking-fault energy for this alloy. It is concluded that this alloy must be hot worked at temperatures higher than usual for austenitic stainless steels in order to minimize flow stress and refine grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. McQueen and J.J. Jonas:J. Appl. Metalworking, 1984, vol. 3 (3), pp. 233–41.

    Google Scholar 

  2. W. Roberts: inDeformation, Processing and Structure, G. Krauss, ed., ASM, Metals Park, OH, 1984, pp. 109–84.

    Google Scholar 

  3. D.J. Towle and T. Gladman:Met. Sci., 1979, Mar.-Apr., pp. 246-56.

  4. M.C. Mataya, M.J. Carr, and G. Krauss:Metall. Trans. A, 1984, vol. 15A, pp. 347–68.

    CAS  Google Scholar 

  5. M.C. Mataya, E.L. Brown, and M.P. Riendeau:Metall. Trans. A, 1990, vol. 21 A, pp. 1969–87.

    Google Scholar 

  6. M.C. Mataya and D.K. Matlock: inSuperAlloy 718 Metallurgy and Applications, E. Loria, ed., TMS, Warrendale, PA, 1989, pp. 155–78.

    Google Scholar 

  7. C. Ouchi, T. Okita, T. Ichihara, and Y. Ueno:Trans. Iron Steel Inst. Jpn., 1980, vol. 20, pp. 833–41.

    CAS  Google Scholar 

  8. E.C. Sanderson, A.W. Brewer, R.W. Krenzer, and G. Krauss: Report No. RFP-2743, Rockwell International, Rocky Flats Plant, June 24, 1978; available through United States Department of Commerce, NTIS, Springfield, VA.

  9. R.L. Page and R.W. Krenzer: Report No. RFP-2692, Rockwell International, Rocky Flats Plant, Mar. 22, 1979; available through United States Department of Commerce, NTIS, Springfield, VA.

  10. M.C. Mataya, M.J. Carr, R.W. Krenzer, and G. Krauss: Report No. RFP-3020, Rockwell International, Rocky Flats Plant, Aug. 10, 1981; available through United States Department of Commerce, NTIS, Springfield, VA.

  11. C.J. Novak: inHandbook of Stainless Steels, D. Peckner and I.M. Bernstein, eds., McGraw-Hill Book Co., New York, NY, 1977, pp. 35–53.

    Google Scholar 

  12. B. Weiss and R. Stickler:Metall. Trans., 1972, vol. 3, pp. 851–66.

    Article  CAS  Google Scholar 

  13. P. Duhaj, J. Ivan, and E. Makovicky:J. Iron Steel Inst., 1968, pp. 1245-51.

  14. J.E. Spruiell, J.A. Scott, C.S. Ary, and R.L. Hardin:Metall. Trans., 1973, vol. 4, pp. 1533–44.

    CAS  Google Scholar 

  15. A.S. Grot and J.E. Spruiell:Metall. Trans. A, 1975, vol. 6A, pp. 2023- 30.

    Google Scholar 

  16. M.C. Mataya and M.J. Carr: inDeformation, Processing and Structure, G. Krauss, ed., ASM, Metals Park, OH, 1984, pp. 445–501.

    Google Scholar 

  17. C.C. Tseng, Y. Shen, S.W. Thompson, M.C. Mataya, and G. Krauss:Metall. Trans. A, 1994, vol. 25A, pp. 1147–58.

    Article  CAS  Google Scholar 

  18. E.F. Denhard: U.S. Patent No. 3,592,634, 1971.

  19. M.W. Perra:in Environmental Degradation of Engineering Materials in Hydrogen, M.R. Louthan, R.P. McNitt, and R.D. Sisson, eds., VPI Press, Blacksburg, VA, 1981, pp. 321–33.

    Google Scholar 

  20. J.A. Douthett:Met. Progress, 1975, Aug., pp. 50-55.

  21. D.T. Read and R.P. Reed:Cryogenics, 1981, July, pp. 415-17.

  22. E.E. Denhard and R.H. Espy:Met. Eng. Q., 1972, pp. 18-20.

  23. B.C. Odegard and A.J. West:Mater. Sci. Eng, 1975, vol. 19, pp. 261- 70.

    Google Scholar 

  24. P.T. Purtscher, M.C. Mataya, L.M. Ma, and R.P. Reed: inAdvances in Cryogenic Engineering (Materials), R.P. Reed and F.R. Fickett, eds., Plenum Press, New York, NY, 1990, vol. 36, pp. 1291–98.

    Google Scholar 

  25. W. Reiss and K. Pohlandt:Exper. Techniq., 1986, pp. 20-24.

  26. M.J. Weis: Master's Thesis, Colorado School of Mines, Golden, CO, 1987.

    Google Scholar 

  27. M.C. Mataya and V. Sackschewsky:Metall. Trans. A, 1994, vol. 25A, pp. 2737–52.

    Article  CAS  Google Scholar 

  28. J.F. Thomas, Jr. and R. Srinivasan: inComputer Simulation Materials Science, R.J. Arsenault, J.R. Beeler, Jr., and D.M. Esterling, eds., ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 269–90.

    Google Scholar 

  29. O.D. Sherby, R.H. Klundt, and A.K. Miller:Metall. Trans. A, 1977, vol. 8A, pp. 843–50.

    CAS  Google Scholar 

  30. C.A. Perkins: Master's Thesis, Colorado School of Mines, Golden, CO, 1987.

    Google Scholar 

  31. D.H. Jack and K.H. Jack:J. Iron Steel Inst., 1972, vol. 210, pp. 790- 92.

    Google Scholar 

  32. S.J. Tua, R.K. Weiss, G. Krauss, and S.W. Thompson:Proc. Gil Speich Symp., G. Krauss and P.E. Repas, eds., 34th Mechanical Working and Steel Processing Conf., Montreal, Oct. 25-28, 1992, ISS-AIME, Warrendale, PA, pp. 53–66.

    Google Scholar 

  33. S. Degallaix, J. Foct, and A. Hendry:Mater. Sci. Technol, 1986, vol. 2, pp. 946–50.

    CAS  Google Scholar 

  34. L.G. Liljestrand:Scand. J. Metall, 1972, vol. 1(5), pp. 271–77.

    CAS  Google Scholar 

  35. M. Fujikura, K. Takada, and K. Ishida:Trans. Iron Steel Inst. Jpn., 1975, vol. 15, pp. 464–69.

    CAS  Google Scholar 

  36. S.R. Keown and F.B. Pickering: inNiobium, H. Stuart, ed., TMS- AIME, Warrendale, PA, 1984, pp. 1113–41.

    Google Scholar 

  37. M.C. Mataya and G. Krauss:J. Appl. Metalworking, 1981, vol. 1 (1), pp. 28–37.

    Google Scholar 

  38. R.E. Schramm and R.P. Reed:Metall. Trans. A, 1975, vol. 6A, pp. 1345–51.

    CAS  Google Scholar 

  39. CG. Rhodes and A.W. Thompson:Metall. Trans. A, 1977, vol. 8A, pp. 1901–06.

    CAS  Google Scholar 

  40. P.J. Brofman and G.S. Ansell:Metall. Trans. A, 1978, vol. 9A, pp. 879–81.

    CAS  Google Scholar 

  41. R.E. Stoltz and J.B. VanderSande: Report No. SAND 79-8735, Sandia National Laboratories, Albuquerque, NM, Dec. 1979.

    Google Scholar 

  42. M.J. Luton and CM. Sellars:Acta Metall., 1969, vol. 17, pp. 1033–43.

    Article  CAS  Google Scholar 

  43. V.M. Sample, G.L. Fitzsimons, and A.J. DeArdo:Acta Metall., 1987, vol. 35 (2), pp. 367–79.

    Article  CAS  Google Scholar 

  44. A.M. Ritter, M.F. Henry, and W.F. Savage:Metall. Trans. A, 1984, vol. 15A, pp. 1339–51.

    CAS  Google Scholar 

  45. A.M. Ritter and M.F. Henry:Metall. Trans. A, 1985, vol. 16A, pp. 1759–71.

    CAS  Google Scholar 

  46. H. Hughes:J. Iron Steel Inst., 1967, July, pp. 775-78.

  47. D.B. Rayaprolu and A. Hendry:Mater. Sci. Technol., 1989, vol. 5, pp. 328–32.

    CAS  Google Scholar 

  48. M.R. Staker and N.J. Grant:Mater. Sci. Eng., 1985, vol. 75, pp. 137- 50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mataya, M.C., Perkins, C.A., Thompson, S.W. et al. Flow stress and microstructural evolution during hot working of alloy 22cr-13ni-5mn-0.3n austenitic stainless steel. Metall Mater Trans A 27, 1251–1266 (1996). https://doi.org/10.1007/BF02649862

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649862

Keywords

Navigation