Skip to main content
Log in

Studies on the influence of metallurgical variables on the stress corrosion behavior of aisi 304 stainless steel in sodium chloride solution using the fracture mechanics approach

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Stress corrosion data on a nuclear grade AISI type 304 stainless steel in a boiling solution of 5M NaCl+ 0.15M Na2SO4+ 3 mL/L HC1 (bp 381 K) for various metallurgical conditions of the steel are presented in this article. The metallurgical conditions used are solution annealing, sensitization, 10 pct cold work, 20 pct cold work, solution annealing + sensitization, 10 pct cold work + sensi-tization, and 20 pct cold work + sensitization. The fracture mechanics approach has been used to obtain quantitative data on the stress corrosion crack growth rates. The stress intensity factor,K 1, andJ integral,J 1, have been used as evaluation parameters. The crack growth rates have been measured using compact tension type samples under both increasing and decreasing stress intensity factors. A crack growth rate of 5 X 10-11 m/s was chosen for the determination of threshold para-meters. Results of the optical microscopic and fractographic examinations are presented. Acoustic signals were recorded during crack growth. Data generated from acoustic emissions, activation energy measurements, and fractographic features indicate hydrogen embrittlement as the possible mechanism of cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K..L. Money and W.W. Kirk:Mater. Performance, 1978, vol. 17, pp. 28–36.

    CAS  Google Scholar 

  2. H.S. Khatak, V. Seetaraman, and J.B. Gnanamoorthy:Pract. Metallogr., 1983, vol. 20, pp. 570–78.

    Google Scholar 

  3. A.J. Russel and D. Tromans:Metall. Trans. A, 1979, vol. 10A, pp. 1229–38.

    Google Scholar 

  4. H. Lefakis and W. Rostoker:Corrosion, 1977, vol. 33, pp. 178–81.

    CAS  Google Scholar 

  5. M.O. Speidel:Metall. Trans. A, 1981, vol. 12A, pp. 779–89.

    Google Scholar 

  6. P. Muraleedharan, H.S. Khatak, J.B. Gnanamoorthy, and P. Rodriguez:Metall Trans. A, 1985, vol. 16A, pp. 285–89.

    CAS  Google Scholar 

  7. H.S. Khatak, P. Muraleedharan, J.B. Gnanamoorthy, P. Rodriguez, and K. Padamanabhan:J. Nucl. Mater., 1989, vol. 168, pp. 157–61.

    Article  CAS  Google Scholar 

  8. H.E. Hanninan:Int. Metall. Rev., 1979, vol. 24, pp. 85–135.

    Google Scholar 

  9. Annual Book of ASTM Standards, ASTM Designation A262-75, ASTM, Philadelphia, PA, 1977.

  10. Annual Book of ASTM Standards, ASTM Designation ASTM E399- 83, ASTM, Philadelphia, PA, 1982, part 10.

  11. Stress Intensity Factor Handbook, Y. Murakani, ed., Pergamon Press, Elmsford, NY, 1987, vol. 1, pp. 18-19.

  12. Annual Book of ASTM Standards, ASTM Designation E813-81, ASTM, Philadelphia, PA, 1982, part 10.

  13. H.R. Baker, M.C. Bloom, R.N. Bolster, and C.R. Singleterry:Corrosion, 1970, vol. 26, pp. 420–426.

    CAS  Google Scholar 

  14. A. Turnbull:Corros. Sci., 1983, vol. 23 (8), pp. 833–70.

    Article  CAS  Google Scholar 

  15. S.K. Mannan, R.K. Dayal, M. Vijayalakshmi, and N. Parvathavarthini:J. Nucl. Mater., 1984, vol. 126, pp. 1–8.

    Article  CAS  Google Scholar 

  16. N. Parvathavarthini, R.K. Dayal, S.K. Seshadri, and J.B. Gnanamoorthy:J. Nucl. Mater., 1989, vol. 168, pp. 83–96.

    Article  CAS  Google Scholar 

  17. S. Szklaska-Smialowska and G. Gragnolino:Corrosion, 1980, vol. 36 (12), pp. 653–65.

    Google Scholar 

  18. Michael Fox:Mater. Perform., 1983, vol. 22, pp. 17–21.

    CAS  Google Scholar 

  19. C.L. Briant and A.M. Ritter:Scripta Metall., 1979, vol. 13, pp. 177–81.

    Article  CAS  Google Scholar 

  20. C.L. Briant and A.M. Ritter:Metall. Trans. A, 1980, vol. 11 A, pp. 2009–17.

    Google Scholar 

  21. V. Seetharaman and R. Krishnan:J. Mater. Sci., 1981, vol. 16, pp. 523–30.

    Article  CAS  Google Scholar 

  22. R. Stefec and F. Franz:Corros. Sci., 1978, vol. 18, pp. 161–67.

    Article  CAS  Google Scholar 

  23. H.S. Khatak, J.B. Gnanamoorthy, P. Rodriguez, and K.A. Padmanabhan:Proc. 10th Int. Congr. on Metallic Corrosion, Madras, India, 1988, vol. III, p. 2249.

    Google Scholar 

  24. H.S. Khatak, J.B. Gnanamoorthy, K.A. Padmanabhan, and P. Rodriguez:Trans. Ind. Inst. Met., 1991, vol. 44, pp. 311–16.

    CAS  Google Scholar 

  25. J.I. Dickson, D. Groulx, and Li. Shiqiong:Mater. Sci. Eng., 1987, vol. 94, pp. 155–73.

    Article  CAS  Google Scholar 

  26. E.I. Meletis and R.F. Hockman:Corros. Sci., 1984, vol. 24 (10), pp. 843–62.

    Article  CAS  Google Scholar 

  27. M. Kowaka and T. Kudo:Trans. J. Inst. Met., 1975, vol. 16, pp. 385- 96.

    Google Scholar 

  28. H. Okada, S. Abe, and T. Murata:Corrosion, 1971, vol. 27, pp. 424- 28.

    Google Scholar 

  29. M. Takano and R.W. Staehle:Trans. J. Inst. Met., 1978, vol. 19, pp. 1–10.

    CAS  Google Scholar 

  30. M.J. Kaufman and J.L. Fink:Acta. Metall., 1988, vol. 36 (8), pp. 2213–28.

    Article  CAS  Google Scholar 

  31. A.J. Bursle and E.N. Pugh:Proc. Conf. on Mechanisms of Environment Sensitive Cracking of Materials, Metals Society, London, 1977, pp. 471–81.

    Google Scholar 

  32. W.W. Gerberich, R.H. Jones, M.A. Friesel, and A. Nozue:Mater. Sci. Eng., 1988, vol. A103, pp. 185–91.

    CAS  Google Scholar 

  33. D.A. Jones:Metall. Trans. A, 1985, vol. 16A, pp. 1133–41.

    CAS  Google Scholar 

  34. T. Maganin, R. Chieragatti, and R. Oltra:Acta. Metall, 1990, vol. 38 (7), pp. 1313–19.

    Article  Google Scholar 

  35. W.F. Flanagan, B. Baslias, and B.D. Lichter:Acta. Metall, 1991, vol. 39 (4), pp. 695–705.

    Article  CAS  Google Scholar 

  36. CD. Beachem:Metall. Trans., 1972, vol. 3A, pp. 437–51.

    Google Scholar 

  37. M.R. Louthan, Jr. and R.G. Devrick:Corros. Sci., 1975, vol. 15, pp. 565–577.

    Article  CAS  Google Scholar 

  38. J.P. Hirth:Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  39. J.K. Tien, A.W. Thomson, I.M. Bernstein, and R.J. Richard:Metall. Trans. A, 1976, vol. 7A, pp. 821–29.

    CAS  Google Scholar 

  40. J.H. Huang and C.J. Altstetter:Metall Trans. A, 1991, vol. 22A, pp. 2605–18.

    CAS  Google Scholar 

  41. R.A. Oriani and P.H. Josephic:Acta. Metall, 1974, vol. 22, pp. 1065- 74.

    Google Scholar 

  42. A.H. Johnson and P.J. Hirth:Metall. Trans. A, 1976, vol. 7A, pp. 1543–48.

    CAS  Google Scholar 

  43. C.L. Briant:Metall. Trans. A, 1978, vol. 9A, pp. 731–33.

    CAS  Google Scholar 

  44. S. Jani, M. Merek, R.F. Hochman, and E.I. Meletis:Metall. Trans. A, 1991, vol. 22A, pp. 1453–61.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khatak, H.S., Gnanamoorthy, J.B. & Rodriguez, P. Studies on the influence of metallurgical variables on the stress corrosion behavior of aisi 304 stainless steel in sodium chloride solution using the fracture mechanics approach. Metall Mater Trans A 27, 1313–1325 (1996). https://doi.org/10.1007/BF02649868

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649868

Keywords

Navigation