Skip to main content
Log in

Chemical stability of zirconia-stabilized alumina fibers during pressure infiltration by aluminum

  • Communications
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Metal matrix composites composed of high-purity aluminum and Du Pont PRD-166 continuous zirconia-stabilized polycrystalline alumina fibers are fabricated by liquid metal infiltration using three different casting procedures. The microstructure of the composites is analyzed using optical and electron microscopy, including analytical electron microscopy. It is found that discrete faceted particles of ZrAl3 form at the interface and grow into the matrix of samples processed above the melting point of the matrix for 13 minutes or more. The formation of this compound is in agreement with thermodynamic stability calculations. It is also found that there is a reaction between solid aluminum and the fibers at 913 K, yielding a reaction product which has the same morphology as that observed with molten aluminum. When the fibers are infiltrated with an initial preform temperature below the metal melting point and a solidifination time below 1 minute, no reaction products were visible in the composite using the scanning electron microscope (SEM). This leads to the conclusion that aluminum matrix composites can be cast with no apparent interfacial reaction product using these fibers provided that adequate processing parameters are chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Romine:Ceram. Eng. Sci. Proc., 1987, vol. 9 (7–8), pp. 755–65.

    Article  Google Scholar 

  2. S. Nourbakhsh, H. Margolin, and F.L. Liang:Metall. Trans. A, 1989, vol. 20A, pp. 2159–66.

    CAS  Google Scholar 

  3. S. Nourbakhsh, F. L. Liang, and H. Margolin:Metall. Trans. A, 1990, vol. 21A, pp. 213–19.

    CAS  Google Scholar 

  4. S. Nourbakhsh, H. Margolin, and F. L. Liang:Metall. Trans. A, 1990 vol. 21A, pp. 2881–89.

    CAS  Google Scholar 

  5. L.J. Masur, A. Mortensen, J. A. Cornie, and M.C. Flemings:Metall. Trans. A, 1989, vol. 20A, pp. 2549–57.

    CAS  Google Scholar 

  6. V. Michaud: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1991.

  7. G. Brauer:Z. Anorg. Chem., 1934, vol. 242, pp. 1–22.

    Google Scholar 

  8. K.S. Vecchio and D.B. Williams:Acta Metall., 1987, vol. 35, pp. 2959–70.

    Article  CAS  Google Scholar 

  9. C. Barrett and T.B. Massalski:Structure of Metals, 3rd ed., Pergamon Press, Oxford, United Kingdom, 1980, p. 6.

    Google Scholar 

  10. W.B. Pearson:A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, New York, NY, 1967.

    Google Scholar 

  11. W.L. Fink and L.A. Willey:Trans. AIME, 1939, vol. 133, pp. 69–80.

    Google Scholar 

  12. J. Weddell: E.I. Du Pont de Nemours & Co., Inc., Wilmington, DE, personal communication, 1991.

  13. T.B. Reed:Free Energy of Formation of Binary Compounds, MIT Press, Cambridge, MA, 1971, pp. 27 and 30.

    Google Scholar 

  14. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleisser, K.K. Kelly, and D.D. Wagner.Selected Values of the Thermodynamic Properties of the Elements, ASM, Metals Park, OH, 1973, pp. 25–31.

    Google Scholar 

  15. N. Saunders and V.G. Rivlin:Mater. Sci., Technol., 1986, vol. 2, pp. 521–27.

    CAS  Google Scholar 

  16. O. Kubaschewshi and C.B. Alcock:Metallurgical Thermochemistry, 5th ed., Pergamon Press, New York, NY, 1979, pp. 336–39.

    Google Scholar 

  17. N.N. Serebrenikov, E.D. Plemnera, and Y.O. Yesin:Chernaya Metall., 1987, vol. 10, pp. 1–3.

    Google Scholar 

  18. R.J. Kematick and H.F. Franzen:J. Solid State Chem., 1984, vol. 54, pp. 226–34.

    Article  CAS  Google Scholar 

  19. A. Mortensen, L.J. Masur, J.A. Cornie, and M.C. Flemings:Metall. Trans. A, 1989, vol. 20A, pp. 2535–47.

    CAS  Google Scholar 

  20. H. Fukunaga and K. Goda:J. Jpn. Inst. Met., 1985, vol. 49 (1), pp. 78–83.

    CAS  Google Scholar 

  21. T. Marumo, S. Fujikawa, and K. Hirano:J. Jpn. Inst. Light Met., 1973, vol. 23, pp. 17–25.

    CAS  Google Scholar 

  22. A.K. Roy and R.P. Chhabra:Metall. Trans. A, 1988, vol. 19A, pp. 273–79.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaacs, J.A., Taricco, F., Michaud, V.J. et al. Chemical stability of zirconia-stabilized alumina fibers during pressure infiltration by aluminum. Metall Trans A 22, 2855–2862 (1991). https://doi.org/10.1007/BF02650246

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650246

Keywords

Navigation