Skip to main content
Log in

Experimental investigation of mixing phenomena in a gas stirred liquid bath

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Mixing phenomena in a room temperature water bath, agitated by injecting air through a straight circular nozzle fitted axially at the bottom of the vessel, were characterized by experimentally measuring mixing time(t mix) by electrical conductivity technique. It was found thatt mix defined at 99.5 pct homogenization did not depend on location and size of conductivity probe, location of tracer injection, and the amount of tracer injected. tpet decreased with increasing gas flow rate and bath height, but decreasing nozzle diameter. Visual observations of the two-phase plume and flow conditions in the bath revealed that the plume swirled above a certain gas flow rate which enhanced the mixing rates in the bath. The transitions in Int mix vs In εb curves were found to correspond to onset of swirling; εb is the rate of buoyancy energy input per unit bath volume. Systematic analysis of experimental data revealed that a fraction of gas kinetic energy contributed to mixing in the bath. It was a function of bath height, being negligible at lower bath heights and almost 1 at larger bath heights. Further, it was experimentally found thatt mix decreased with increasing bath height only up to a certain value, beyond which it started increasing. Visual observations of the bath revealed that the height at whicht mix started increasing corresponded to a transition in which the bath was converted into a bubble column. The experimental data, for a particular bath height, were fitted into two separate straight lines of the formt mix = −n wherec andn are empirical constants and ε is the rate of energy input per unit bath volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

empirical constant defined by Eq. [3]

c 1c2 :

empirical constants defined by Eqs. [7] and [8], respectively

D :

bath diameter (m)

d n :

nozzle diameter (mm)

g :

acceleration due to gravity (m/s2)

H :

bath height (m)

h :

defined by Eq. [6] (m)

n, n1 :

empirical constants defined by Eqs. [3], [7], and [8],

n 2 :

respectively

Patm :

atmospheric pressure (N/m2)

Q :

gas flow rate (Nm3/s)

s :

standard error (dimensionless)

T L :

liquid temperature (K)

t mix :

mixing time (s)

u LP :

average liquid velocity inside plume (m/s)

V L :

bath volume (m3)

V p :

plume volume (m3)

x :

fraction of gas kinetic energy contribution to mixing (dimensionless)

Y :

degree of mixing (dimensionless)

ε:

rate of energy dissipation per unit bath volume (kg/ms3)

ε b :

rate of buoyancy energy per unit bath volume (kg/ms3)

ε bc :

it corresponds to transition in Int mix vs In εb plots (kg/ms3)

ε bs :

it corresponds to onset of swirling motion of plume (kg/ms3)

ε k :

rate of gas kinetic energy per unit bath volume (kg/ms3)

θ c :

plume cone angle (deg)

p G :

gas density (kg/m3)

p L :

liquid density (kg/m3)

References

  1. B. Öhman and T. Lehner:SCANINJECTl, Proc. of Int. Conf. on Injection Metallurgy, Jernkontoret, Sweden, 1977.

    Google Scholar 

  2. H.-P. Hastert and H. Richter:Proc. Int. Symp. on Modem Developments in Steelmaking, Jamshedpur, India, 1981, pp. 75–83.

  3. R. Baker, A. S. Normanton, G.D. Spenceley, and R. Atkinson:Ironmaking and Steelmaking, 1980, vol. 7, pp. 227–38.

    CAS  Google Scholar 

  4. R. Henrion:Ironmaking and Steelmaking, 1980, vol. 7, pp. 239–41.

    CAS  Google Scholar 

  5. M. Saigusa, J. Nagai, F. Sudo, H. Bada, and S. Yamada:Ironmaking and Steelmaking, 1980, vol. 7, pp. 242–48.

    CAS  Google Scholar 

  6. N. El-Kaddah and J. Szekely:SCANINJECT III, Proc. of Int. Conf. on Injection Metallurgy, Jernkontoret, Sweden, 1983.

    Google Scholar 

  7. P. V. Danckwarts:Chem. Engg. Sci., 1958, vol. 8, pp. 93–102.

    Article  Google Scholar 

  8. R.W. MacDonald and L. P. Edger:Chem. Engg. Prog., 1951, vol. 47, pp. 363–69.

    CAS  Google Scholar 

  9. J.B. Gray:Chem. Engg. Prog., 1963, vol. 59, pp. 55–59.

    CAS  Google Scholar 

  10. C.J. Hoogendoorn and A. P. Denttartog:Chem. Engg. Sci., 1967, vol. 22, pp. 1689–99.

    Article  CAS  Google Scholar 

  11. C.K. Coyle, H. E. Hirschland, B.J. Michel, and J. Y. Oldshue:AIChE Journal, 1970, vol. 16, pp. 903–06.

    Article  Google Scholar 

  12. F. Oeters, H.C. Dromer, and J. Kepura:SCANINJECT III, Proc. of Int. Conf. on Injection Metallurgy, Jernkontoret, Sweden, 1983.

    Google Scholar 

  13. S. C. Koria and K. W. Lange:Arch. Eisenhüttenwes., 1984, vol. 55, pp. 97–100.

    Google Scholar 

  14. H.C. Dromer, J. Mietz, F. Oeters, and S. Scheider:Proc. of Shenyang Symposium on Injection Metallurgy and Secondary Refining of Steel, Ministry of Metallurgical Industry, China, 1984.

    Google Scholar 

  15. V. W. Mohle and B. Vuesser:Chem. Ing. Tech., 1952, vol. 24, p. 494.

    Article  CAS  Google Scholar 

  16. J.Y. Oldshue, H. E. Hirschland, and A.T. Gretton:Chem. Engg. Prog., 1956, vol. 52, pp. 481–84.

    CAS  Google Scholar 

  17. K. Nakanishi, T. Fujii, and J. Szekely:Ironmaking and Steelmaking, 1975, vol. 2, pp. 193–97.

    CAS  Google Scholar 

  18. U.P. Sinha and M.J. McNallan:Metall. Trans. B, 1985, vol. 16B, pp. 850–53.

    Article  CAS  Google Scholar 

  19. J.G. Vande Vusse:Chem. Engg. Sci., 1955, vol. 4, pp. 178–200.

    Article  Google Scholar 

  20. H. Kramers, G. M. Baars, and W. H. Knoll:Chem. Engg. Sci., 1953, vol. 2, pp. 35–42.

    Article  CAS  Google Scholar 

  21. D.E. Lamb, F. S. Manning, and R.H. Wilhelm:AIChE Journal, 1960, vol. 6, pp. 682–85.

    Article  CAS  Google Scholar 

  22. L.H. Lehrer:J and EC Proc. Des. Dev., 1968, vol. 7, pp. 226–39.

    Article  CAS  Google Scholar 

  23. V. Navak and F. RiegenTrans. I Chem. E, 1969, vol. 47, p. T335.

    Google Scholar 

  24. A.G.C. Lane and P. Rice:Trans. I Chem. E, 1982, vol. 60, pp. 171–76.

    CAS  Google Scholar 

  25. S. Asai, T. Okamoto, and Ji-Cheng He:Trans. ISIJ, 1983, vol. 23, pp. 43–50.

    Google Scholar 

  26. O. Haida and J.K. Brimacombe:SCANINJECT III, Proc. of Int. Conf. on Injection Metallurgy, Jernkontoret, Sweden, 1983.

    Google Scholar 

  27. D. Oymo and R.I.L. Guthrie:Proc. of 4th Process Technology Conference, TMS-AIME (ISS), 1984.

  28. D.E. Ford, R. A. Mashelkar, and J. Ulbrect:Proc. Tech. Inst., 1982, vol. 17, p. 803.

    Google Scholar 

  29. R.I.L. Guthrie:Iron and Steelmaker, 1982, vol. 9, pp. 41–45.

    Google Scholar 

  30. M. Sano and K. Mori:Trans. ISIJ, 1983, vol. 23, pp. 169–75.

    Google Scholar 

  31. W. Yoshio, Ji-Cheng He, S. Asai, and I. Muchi:Tetsu-to-Hagané, 1983, vol. 69, pp. 1160–66.

    Google Scholar 

  32. N.B. Ballal and A. Ghosh:Metall. Trans. B, 1981, vol. 12B, pp. 525–34.

    Article  CAS  Google Scholar 

  33. N.B. Ballal: Ph.D. Thesis, Indian Institute of Technology, Kanpur, India, 1980.

    Google Scholar 

  34. S. Nagata:Mixing Principles and Applications, John Wiley and Sons, New York, NY, 1975, pp. 171–214.

    Google Scholar 

  35. G. G. Krishna Murthy: Ph.D. Thesis, Indian Institute of Technology, Kanpur, India, 1986.

    Google Scholar 

  36. G.G. Krishna Murthy, S.P. Mehrotra, and A. Ghosh:Proc. of 5th Process Technology Conference, TMS-AIME (ISS), 1986.

  37. R.S. Broadkey:Turbulence in Mixing Operations — Theory and Applications to Mixing and Reaction, Academic Press, New York, NY, 1975, pp. 47–119.

    Google Scholar 

  38. S.M. Bhavaraju, T. W. F Russell, and H.W. Blanch:AIChE Journal, 1978, vol. 24, pp. 454–66.

    Article  CAS  Google Scholar 

  39. T. C. Hsiao, T. Lehner, and B. Kjellberg:Scand. J. Metallurgy, 1980, vol. 9, pp. 105–10.

    CAS  Google Scholar 

  40. N.J. Themelis and P. Goyal:Can. Met. Quart., 1983, vol. 22, pp. 313–20.

    CAS  Google Scholar 

  41. G. G. Krishna Murthy, A. Ghosh, and S. P. Mehrotra:Metall. Trans. B, 1988, vol. 19B, pp. 885–92.

    Article  Google Scholar 

  42. G.G. Krishna Murthy, A. Ghosh, and S. P. Mehrotra:Metall. Trans. B, in press.

  43. Y. Sahai and R.I.L. Guthrie:Metall. Trans. B, 1982, vol. 13B, pp. 193–202.

    Article  CAS  Google Scholar 

  44. P. B. Whalley and J.F. Davidson:Proc. of Symposium on Multiphase Flow Systems (Symp. S. No. 38), Instn. Chem. Engr., London, 1974.

    Google Scholar 

  45. J.B. Joshi and M.M. Sharma:Trans. I Chem. E, 1976, vol. 54, p. 42.

    CAS  Google Scholar 

  46. J.B. Joshi and M.M. Sharma:Trans. I Chem. E, 1979, vol. 57, pp. 244–51.

    CAS  Google Scholar 

  47. V. W. Uhl and J. B. Gray:MixingTheory and Practice, Academic Press, New York, NY, 1966, vol. I, pp. 7–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student in the Department of Metallurgical Engineering at the Indian Institute of Technology, Kanpur, India

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murthy, G.G.k., Mehrotra, S.P. & Ghosh, A. Experimental investigation of mixing phenomena in a gas stirred liquid bath. Metall Trans B 19, 839–850 (1988). https://doi.org/10.1007/BF02651408

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651408

Keywords

Navigation