Skip to main content
Log in

Convective heat-transfer measurements in liquid metals under different fluid flow conditions

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

In this study an experimental method to measure convective heat transfer characteristics in liquid metals is presented. This method involves the immersion into a metal bath of a solid specimen whose melting point is equal to or lower than that of the metal or alloy in the metal bath, and which will not react chemically with the liquid metal or alloys used. The specimen should have a hollow bore whose opening is held above the surface of the liquid metal; immersion continues until such a time as the liquid metal penetrates the hollow bore. The apparent weight of the specimen is monitored to determine the rate at which the net downward force changes. Experimental results are reported for liquid aluminum, liquid copper, and liquid steel. Those experimental results were conducted under different fluid flow conditions. The applicability of this method to liquid slags is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area

C p :

heat capacity

F :

force (Newton)

F NFD :

net downward force; the force which is registered by the load cell

F G :

weight

F B :

buoyancy force

g :

constant for the acceleration of gravity (9.81 m/s2)

ΔH:

enthalpy change (kJ/kg)

h :

heat transfer coefficient (kW/m2/K)

H :

immersion depth of lance

I s :

dimensionless number for induction stirring

k :

thermal conductivity (W/mK)

L :

immersed cylinder length

L m :

bath depth

λ:

latent heat of fusion (kJ/kg)

m :

mass

NuL :

average Nusselt number (hL/k)

N l NN :

dimensionless injection numbers

Pr:

Prandtl number (Cpμ/k)

q:

heat flux (kW/m2)

Q :

volumetric flow rate of argon (cm3/sec)

RaL :

Rayleigh number for heat transfer

r o :

internal lance radius

R m :

(internal) crucible radius

SPH :

bath superheat(T B-TM)

Ste:

Stefan number

t :

time

T B :

bath temperature

T M :

melting point (or liquidus temperature for alloys)

U p :

rising plume velocity

V :

volume

X:

semi-empirical factor for induction stirring

X = -1:

power off

X = +1:

power on

α :

oroportional

eff :

effective

g :

gas

IMM :

immersed

L :

immersed cylinder length

L :

liquid

s :

solid

π :

density

μ :

viscosity

β :

fractional submergence of lance(H /L m)

References

  1. R.E. Carreker:Journal of Metals, Oct. 1963, pp. 774–80.

  2. G. Horvay:Trans. ASME, Feb. 1965, pp. 1–16.

  3. R.J. Hoe, D. Dropkin, and O.E. Dwyer:Trans. ASME, 1957, vol. 79, j. 899.

    CAS  Google Scholar 

  4. C. L. Richard, O.E. Dwyer, and D. Dropkin:Trans. ASME, 1958, vol. 80, p. 646.

    Google Scholar 

  5. D. V. Julian and R. G. Atkins:J and EC Fundamentals, Nov. 1969, vol. 8, pp. 641–46.

    Article  CAS  Google Scholar 

  6. D.H. White: Ph.D. Thesis, Oregon State University, Corvallis, OR, 1971.

    Google Scholar 

  7. R. G. Colwell: Ph.D. Thesis, Oregon State University, Corvallis, OR, 1973.

    Google Scholar 

  8. L. E. Wiles and J. R. Welty:Trans. ASME, Nov. 1974, pp. 455–58.

  9. R. G. Colwell and J. R. Welty:Trans. ASME, Nov. 1974, pp. 448–54.

  10. J. R. Welty and D. R. Peinecke:Trans. ASME, Feb. 1976, pp. 146–48.

  11. J.S. McDonald and T. J. Connolly:Nuclear Science and Engineering, 1960, vol. 8, pp. 369–77.

    CAS  Google Scholar 

  12. A. P. Kuclryavtsev, D. M. Ovechkin, D. N. Subbotin, V. I., and A.A. Tsyganok: Zhidk. Metal. Sb. Statei, 1967, pp. 131–36.

  13. L. C. Witte:Journal of Heat Transfer, Feb. 1968, pp. 9–12.

  14. N. Sheriff and N. W. Davies: Internal Seminar of the ICHMT, Dubrovnik, Sept. 1–5, 1980.

  15. D. Technine and M. A. Amblard:2nd Int. Meeting on Nuclear Reactor Thern.al Hydraulics, Santa Barbara, Jan. 11–14, 1983, vol. 2, pp. 1412–’7.

  16. C. Harrison and F. Weinberg:Metall. Trans. B, 1985, vol. 16B, pp. 355–57.

    Article  CAS  Google Scholar 

  17. F. M. Chiesa and R. I. L. Guthrie:Journal of Heat Transfer, ASME, Paper No. 74-HT-RR.

  18. F. A. Mucciardi: M. Eng. Thesis, McGill University, Montreal, PQ, Canada, Jan. 1977.

    Google Scholar 

  19. J. Szekely, Y. K. Chuang, and J. W. Hlinka:Metall. Trans., 1972, vol. 3, pp. 2825–33.

    Article  CAS  Google Scholar 

  20. T. Tanoue, Y. Umeda, H. Ichikawa, and T. Aoki:The Sumitomo Search No. 9, 1973, pp. 74–87.

  21. I. P. Kazachkov and I. B. Parimonchik:Steel in U.S.S.R., Feb. 1973, pp. 123–24.

  22. L. Gourtsoyannis, H. Henein, and R. I. L. Guthrie:Proceedings of Sessions from 103 rd Annual Meeting, J. Farrel, ed., Dallas, TX, Feb. 1974, pp. 45–68.

  23. R. I. L. Guthrie, L. Gourtsoyannis, and H. Henein:Canadian Metallurgical Quarterly, 1976, vol. 15, no. 2.

  24. N. El-Kaddah, J. Szekely, and G. Carlsson:Metall. Trans. B, 1984, vol. 15B, pp. 633–40.

    Article  Google Scholar 

  25. S.A. Argyropoulos, R. S. Valiveti, and B.M. Closset:Journal of Metals, 1983, vol. 35, no. 10, pp. 30–35.

    Google Scholar 

  26. S. W. Churchill and H. H. S. Chu:Int. J. Heat Mass Transfer, 1975, vol. 18, pp. 1323–29.

    Article  CAS  Google Scholar 

  27. C. Y. Warner and V. S. Arpaci:Int. Journal of Heat Mass Transfer, 1968, vol. 11, pp. 397–406.

    Article  Google Scholar 

  28. S.A. Argyropoulos and P. G. Sismanis:Journal of Metals, 1984, vol. 36, no. 10, pp. 29–33.

    CAS  Google Scholar 

  29. C. Gau and R. Viskanta:Journal of Heat Transfer, Trans, and ASME, Feb. 1986, vol. 108, pp. 174–81.

    Article  CAS  Google Scholar 

  30. CG. Levi and R. Mehrabian:Metall. Trans. B, 1980, vol. 11B, pp. 21–27.

    Article  CAS  Google Scholar 

  31. H. Rieger and H. Beer:Journal of Heat Transfer, Trans. ASME, Feb. 1986, vol. 108, pp. 166–73.

    Google Scholar 

  32. R.J. Andreini, J. S. Foster, and R.W. Callen:Metall. Trans. B, 1977, vol. 8B, pp. 625–31.

    CAS  Google Scholar 

  33. L.R. Farias and G. A. Irons:Metall. Trans. B, 1985, vol. 16B, pp. 211–25.

    Article  CAS  Google Scholar 

  34. S.A. Argyropoulos and R. I. L. Guthrie:Metall. Trans. B, 1984, vol. 15B, pp. 47–58.

    Article  CAS  Google Scholar 

  35. J. Szekely, H. H. Grevet, and N. El-Kaddah:Int. Journal of Heat and Mass Transfer (Technical Notes), July 1984, vol. 27, no. 7, pp. 1116–21.

    Article  Google Scholar 

  36. D. Mazumdar and R. I. L. Guthrie:Metall. Trans. B, 1985, vol. 16B, pp. 83–90.

    Article  CAS  Google Scholar 

  37. P. G. Sismanis and S. A. Argyropoulos:Proceedings of the 5th PTD Conference, Detroit, MI, April 1985, pp. 167–77.

  38. P. G. Sismanis: Ph.D. Thesis, McGill University, Montreal, Canada, April 1987.

    Google Scholar 

  39. Metals Handbook, 9th ed., Vol. 2, “Properties and Selection: Nonferrous Alloys and Pure Metals”, American Society for Metals, 1979.

  40. Metals Handbook, 9th ed., Vol. 1, “Properties and Selection: Iron and Steels”, American Society for Metals, 1978.

  41. C. J. Smithells:Metals References Book, 5th ed., Butterworth’s, 1976.

  42. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman:Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, 1973.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Postdoctoral Research Fellow with the Department of Metallurgy and Materials Science, University of Toronto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sismanis, P.G., Argyropoulos, S.A. Convective heat-transfer measurements in liquid metals under different fluid flow conditions. Metall Trans B 19, 859–870 (1988). https://doi.org/10.1007/BF02651410

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651410

Keywords

Navigation