Skip to main content
Log in

Potentiometric determination of the gibbs energies of formation of SrZrO3 and BaZrO3

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The Gibbs free energies of formation of strontium and barium zirconates have been determined in the temperature range 960 to 1210 K using electrochemical cells incorporating the respective alkaline-earth fluoride single crystals as solid electrolytes. Pure strontium and barium monoxides were used in the reference electrodes. During measurements on barium zirconate, the oxygen partial pressure in the gas phase over the electrodes was maintained at a low value of 18.7 Pa to minimize the solubility of barium peroxide in the monoxide phase. Strontium zirconate was found to undergo a phase transition from orthorhombic perovskite (o) with space groupCmcm; D 172h to tetragonal perovskite (t) having the space group 14/mcm;D 184h at 1123 (/+- 10) K. Barium zirconate does not appear to undergo a phase transition in the temperature range of measurement. It has the cubic perovskite (c) structure. The standard free energies of formation of the zirconates from their component binary oxidesAO (A = Sr, Ba) with rock salt (rs) and ZrO2 with monoclinic (m) structures can be expressed by the following relations: SrO (rs) + ZrO2 (m) → SrZrO3 (o) ΔG° = -74,880 - 14.2T (/+-200) J mol-1 SrO (rs) + ZrO2 (m) → SrZrO3 (t) ΔG° = -73,645 - 15.37T (/+-200) J mol-1 BaO (rs) + ZrO2 (m) → BaZrO4 (c) ΔG° = -127,760-1.79T (/+-250) J mol-1 The results of this study are in reasonable agreement with calorimetric measurements reported in the literature. Systematic trends in the stability of alkaline-earth zirconates having the stoichiometry AZrO3 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Janke:Metall. Trans. B, 1982, vol. 13B, pp. 227–35.

    Article  CAS  Google Scholar 

  2. K.T. Jacob and Y. Waseda:Thermochim. Acta, 1994, vol. 239, pp. 233–41.

    Article  CAS  Google Scholar 

  3. E.H.P. Cordfunke and R.J.M. Konings:J. Nucl. Mater., 1988, vol. 152, pp. 301–09.

    Article  Google Scholar 

  4. E.H.P. Cordfunke and R.J.M. Konings:Thermochemical Data for Reactor Materials and Fission Products, North-Holland, Amsterdam, 1990.

    Google Scholar 

  5. E.G. King and W.W. Weller: U.S. Bureau of Mines Rep. Invest. 5571, Department of the Interior, Washington, DC, 1960.

    Google Scholar 

  6. V.A. Levitskii, D.Sh. Tsagareishvili, and G.G. Gvelesiani:Teplofiz. Vys. Temp., 1976, vol. 14, pp. 78–84.

    CAS  Google Scholar 

  7. K. Nagarajan, R. Saha, R. Babu, and C.K. Mathews:Thermochim. Acta, 1985, vol. 90, pp. 297–304.

    Article  CAS  Google Scholar 

  8. E.N. Fomichev, N.P. Slyusar, A.D. Krivorotenko, and V.Ya. Tolstaya:Ogneupory, 1973, vol. 7, pp. 36–39.

    Google Scholar 

  9. E.H.P. Cordfunke and R.J.M. Konings:Thermochim. Acta, 1989, vol. 156, pp. 45–51.

    Article  CAS  Google Scholar 

  10. A.S. L’vova and N.N. Fedos’ev:Russ. J. Phys. Chem., 1964, vol. 38, p. 14.

    Google Scholar 

  11. E.T. Muromachi and A. Navrotsky:J. Solid State Chem., 1988, vol. 72, pp. 244–56.

    Article  Google Scholar 

  12. V.A. Levitskii:J. Solid State Chem., 1978, vol. 25, pp. 9–22.

    Article  CAS  Google Scholar 

  13. L.B. Pankratz:Thermodynamic Properties of Elements and Oxides, U.S. Bureau of Mines Bull. 672, Department of the Interior, Washington, DC, 1982.

    Google Scholar 

  14. L.B. Pankratz:Thermodynamic Properties of Halides, U.S. Bureau of Mines Bull. 674, Department of the Interior, Washington, DC, 1984.

    Google Scholar 

  15. V.A. Levitskii, Yu. Ya. Skolis, Yu. Kheminov, and N.N. Shevchenko:Russ. J. Phys. Chem., 1974, vol. 48, pp. 24–27.

    Google Scholar 

  16. O.V. Kedrovskii, I.V. Kovtunenko, E.V. Kiseleva, and A.A. Bundel:Russ. J. Phys. Chem., 1967, vol. 41, pp. 205–08.

    Google Scholar 

  17. R. Akila, K.T. Jacob, and A.K. Shukla:Bull. Mater. Sci., 1986, vol. 8, pp. 453–65.

    CAS  Google Scholar 

  18. M.D. Mathews, E.B. Mirza, and A.C. Momin:J. Mater. Sci. Lett., 1991, vol. 10, pp. 305–06.

    Article  CAS  Google Scholar 

  19. K.T. Jacob and J.P. Hajra:Bull. Mater. Sci., 1987, vol. 9, pp. 37–46.

    CAS  Google Scholar 

  20. K.T. Jacob, K.P. Abraham, and S. Ramachandran:Metall. Trans. B, 1990, vol. 21B, pp. 521–27.

    Article  CAS  Google Scholar 

  21. A. Ahtee, M. Ahtee, A.M. Glazer, and A.W. Hewat:Acta Crystallogr., 1978, vol. B32, pp. 3243–46.

    Google Scholar 

  22. M. Ahtee, A.M. Glazer, and A.W. Hewat:Acta Crystallogr., 1978, vol. B34, pp. 752–58.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, K.T., Waseda, Y. Potentiometric determination of the gibbs energies of formation of SrZrO3 and BaZrO3 . Metall Mater Trans B 26, 775–781 (1995). https://doi.org/10.1007/BF02651723

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651723

Keywords

Navigation