Skip to main content
Log in

Optimal riser design for metal castings

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The optimal design of a casting rigging system is considered. The casting geometry is systematically modified to minimize the gate and riser volume, while simultaneously ensuring that no porosity appears in the product. In this approach, we combine finite-element analysis of the solidification heat-transfer process with design sensitivity analysis and numerical optimization to systematically improve the casting design. Methods are presented for performing the sensitivity analysis, including the sensitivity of important solidification parameters such as freezing time, temperature gradient, and cooling rate. We also present methods for performing Newton-Raphson iteration for solidification models that use the boundary-curvature method to represent the sand mold. Finally, the methods are applied to design risers for an L-shaped steel plate to control microporosity and for a steel hammer to control macroporosity. It is demonstrated that the size of a conventionally designed riser can be reduced by a significant amount while retaining the quality of the cast product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.S. Piwonka, V. Voiler, and L. Katgerman: inModeling of Casting, Welding and Advanced Solidification Processes—VI, T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS-AIME, Warrendale, PA, 1993.

    Google Scholar 

  2. G. Upadhya, A.J. Paul, and J.L. Hill: In T.S. Piwonka, V. Voller, and L. Katgerman, eds.,Modeling of Casting, Welding and Advanced Solidification Processes—VI, Warrendale, PA, 1993. TMS-AIME.

    Google Scholar 

  3. F.J. Bradley, T.M. Adams, R. Gadh, and A.K. Mirle: inModeling of Casting, Welding and Advanced Solidification Processes—VI, T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS-AIME, Warrendale, PA, 1993.

    Google Scholar 

  4. N. Zabaras, Y. Ruan, and O. Richmond:Numer. Heat Trans., Part B, 1992, vol. 21, pp. 307–25.

    Google Scholar 

  5. N. Zabaras and S. Kang:J. Mater. Process. Manufact. Sci., 1993, vol. 2, pp. 141–57.

    CAS  Google Scholar 

  6. T. Overfelt: inModeling of Casting, Welding and Advanced Solidification Processes—VI, T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS-AIME, Warrendale, PA, 1993.

    Google Scholar 

  7. Daniel A. Tortorelli, Michael M. Tiller, and Jonathan A. Dantzig:Comput. Meth. Appl. Mech. Eng., 1994, vol. 113, pp. 141–155.

    Article  Google Scholar 

  8. A. Tortorelli, J.A. Tomasko, T.E. Morthland, and J.A. Dantzig:Comput. Meth. Appl. Mech. Eng., 1994, vol. 113, pp. 157–72.

    Article  Google Scholar 

  9. G.N. Vanderplaats:Numerical Optimization Techniques for Engineering Design: with Applications, McGrawHill, New York, NY, 1984.

    Google Scholar 

  10. R.T. Haftka:Int. J. Numer. Meth. Eng., 1981, vol. 17, pp. 71–80.

    Article  Google Scholar 

  11. K. Dems:J. Therm. Stresses, 1986, vol. 9, pp. 303–24.

    Google Scholar 

  12. K. Dems:J. Therm. Stresses, 1987, vol. 10, pp. 1–16.

    Google Scholar 

  13. R.A. Meric:Int. J. Numer. Meth. Eng., 1988, vol. 26, pp. 109–20.

    Article  Google Scholar 

  14. H.D. Brody and D. Apelian:Modeling of Casting Welding Processes, TMS-AIME, Warrendale, PA, 1980.

    Google Scholar 

  15. J.A. Dantzig and J.T. Berry:Modeling of Casting and Welding Processes—II, TMS-AIME, Warrendale, PA, 1982.

    Google Scholar 

  16. S. Kou and R. Mehrabian:Modeling and Control of Casting and Welding Processes—III, TMS-AIME, Warrendale, PA, 1986.

    Google Scholar 

  17. A.F. Giamei and G.J. Abbaschian:Modeling of Casting and Welding Processes—IV, TMS-AIME, Warrendale, PA, 1988.

    Google Scholar 

  18. M. Rappaz and K.W. Mahin:Modeling of Casting, Welding and Advanced Solidification Processes—V, TMS-AIME, Warrendale, PA, 1991.

    Google Scholar 

  19. R.D. Cook:Concepts and Applications of Finite Element Analysis. Wiley, New York, NY, 1981.

    Google Scholar 

  20. J.A. Dantzig:Int. J. Numer. Meth. Eng., 1989, vol. 28, pp. 769–85.

    Article  Google Scholar 

  21. M.S. Engelman:FIDAP Theoretical Manual, Fluid Dynamics International, Evanston, IL, 1993.

    Google Scholar 

  22. J.A. Dantzig and S.C. Lu:Metall. Trans. B, 1985, vol. 16B, pp. 195–202.

    Google Scholar 

  23. J.A. Dantzig and J. Wiese:Metall. Trans. B, 1985, vol. 16B, pp. 203–09.

    Google Scholar 

  24. C.O. Spivey and D.A. Tortorelli:Int. J. Numer. Meth. Eng., 1994, vol. 37, pp. 19–73.

    Article  Google Scholar 

  25. P. Michaleris, D.A. Tortorelli, and C.A. Vidal:Int. J. Numer. Meth. Eng., in press.

  26. D.A. Tortorelli, R.B. Haber, and S.C.-Y. Lu:Comput. Meth. Appl. Mech. Eng., 1990, vol. 75, pp. 61–78.

    Google Scholar 

  27. K. Dems and Z. Mroz:Int. J. Solids Struct., 1984, vol. 20(6), pp. 527–52.

    Article  Google Scholar 

  28. E. Niyama, T. Uchida, M. Morikawa, and S. Saito:AFS Int. Cast Met. J., 1981, vol. 6, pp. 16–22.

    Google Scholar 

  29. E. Niyama, M. Morikawa, T. Uchida, and S. Saito:AFS Int. Cast Met. J., 1982, vol. 7, pp. 52–63.

    Google Scholar 

  30. F.A. Brandt, H.F. Bishop, and W.S. Pellini:Trans. AFS, 1953, vol. 61, p. 451.

    Google Scholar 

  31. R.D. Pehlke, A. Jeyarajan, and H. Wada:Summary of Thermal Properties for Casting Alloys and Mold Materials, NTIS-PB83-2 1003, University of Michigan, Ann Arbor, MI 1982.

    Google Scholar 

  32. ASM Metals Handbook, 8th ed., ASM INTERNATIONAL, Metals Park, OH, 1973.

  33. H.F. Bishop, E.T. Myskowski, and W.S. Pellini:Trans. Am. Foundrymen’s Soc., 1955, vol. 63, pp. 271–81.

    Google Scholar 

  34. A.D. Belegundu and S.D. Rajan:Comput. Meth. Appl. Mech. Eng., 1988, vol. 66, pp. 87–106.

    Article  Google Scholar 

  35. G.N. Vanderplaats: ADS—AFORTRAN Program for Automated Design Synthesis, Naval Postgraduate School, Monterey, CA, 1984.

    Google Scholar 

  36. D.A. Tortorelli and Z. Wang:Int. J. Solids Struct., vol. 30 (9), pp. 1181–1212.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Mechanical and Industrial Engineering, University of Illinois

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morthland, T.E., Byrne, P.E., Tortorelli, D.A. et al. Optimal riser design for metal castings. Metall Mater Trans B 26, 871–885 (1995). https://doi.org/10.1007/BF02651733

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651733

Keywords

Navigation