Skip to main content
Log in

Carbide- matrix interface mechanism of stress corrosion cracking behavior of high-strength CrMo steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effects of tempering temperature and carbon content on the stress corrosion cracking (SCC) behavior of high-strength CrMo steels in 3.5 pct NaCl aqueous solution have been studied by means of Auger electron spectroscopy (AES) and scanning and transmission electron micros- copy (SEM and TEM). Experimental results show that the specimens with higher carbon content and tempered at lower temperatures have a higher tendency for intergranular fracture and lower threshold stress intensity KISCC The SCC behavior is significantly affected by the distribution of carbide particles, especially carbide coverage on prior austenitic grain boundaries, through a carbide-matrix interface mechanism as the interface is the preferential site for the nucleation and propagation of microcracks because of its strong ability to trap hydrogen atoms. In low- temperature tempered states, there is the serious segregation of carbon in the form of carbide particles at prior austenitic grain boundaries, causing low-stress intergranular fracture. After tempering at high temperatures (≥400 °C), both the coalescence of the carbide particles at the grain boundaries and the increase of carbide precipitation within grains cause the decrease of the tendency for intergranular fracture and the rise of KISCC. The higher the carbon content in steels, the more the carbide particles at the grain boundaries and, subsequently, the higher the tendency for low-stress intergranular fracture. The carbide effect on KISCC makes an important contribution to the phenomenon that KISCC decreases with the rise of yield strength of the steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.W. Gerberich: inHydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 115–47.

    Google Scholar 

  2. W.W. Gerberich and Y.T. Chen:Metall. Trans. A, 1975, vol. 6A, pp. 271–78.

    CAS  Google Scholar 

  3. E.A. Steigerwald and W.D. Benjamin:Metall. Trans. A, 1971, vol. 2A, pp. 606–08.

    Google Scholar 

  4. Zhen Wenlong:J. Chinese Soc. Corrosion Protection, 1984, vol. 4, pp. 287–94.

    Google Scholar 

  5. Zhen Wenlong, Zhu Guopei, Ouyang Huaijin, and Li Ge:Acta Metall. Sinica, 1986, vol. 22, pp. A275–82.

    Google Scholar 

  6. R.M. Magdowski and M.O. Speidel:Metall. Trans. A, 1988, vol. 19A, pp. 1583–96.

    CAS  Google Scholar 

  7. M.H. Peterson, B.F. Brown, R.L. Newbegin, and R.E. Groover:Corrosion, 1967, vol. 23, pp. 142–48.

    CAS  Google Scholar 

  8. G. Sandoz:Metall. Trans. A, 1972, vol. 3, pp. 1169–76.

    Article  CAS  Google Scholar 

  9. A.W. Loginow and E.H. Phelps:Corrosion, 1975, vol. 31, pp. 404–15.

    CAS  Google Scholar 

  10. S.V. Nair and J.K. Tien:Metall. Trans. A, 1985, vol. 16A, pp. 2333–40.

    CAS  Google Scholar 

  11. S.K. Banerji, C.J. M Mahon, Jr., and H.C. Feng:Metall. Trans. A, 1978, vol. 9A, pp. 237–47.

    CAS  Google Scholar 

  12. C.L. Briant and S.K. Banerji:Int. Met. Rev., 1978, vol. 23, pp. 164–99.

    CAS  Google Scholar 

  13. N. Bandyopadhyay, Jun Kameda, and C.J. McMahon, Jr.:Metall. Trans. A, 1983, vol. 14A, pp. 881–88.

    Google Scholar 

  14. D. Lin, Y. Lan, and J. Wu:Metall. Trans. A, 1988, vol. 19A, pp. 2225–31.

    CAS  Google Scholar 

  15. Dongliang Lin and Jiansheng Wu:Acta Metall. Sinica, 1984, vol. 20, pp. A62–70.

    CAS  Google Scholar 

  16. R. Viswanathan and S.J. Hudak, Jr.:Metall. Trans. A, 1977, vol. 8A, pp. 1633–37.

    CAS  Google Scholar 

  17. B.D. Craig and G. Krauss:Metall. Trans. A, 1980, vol. 11A, pp. 1799–1808.

    CAS  Google Scholar 

  18. B.D. Craig:Metall. Trans. A, 1982, vol. 13A, pp. 907–12.

    Google Scholar 

  19. B.D. Craig:Metall. Trans. A, 1984, vol. 15A, pp. 565–72.

    CAS  Google Scholar 

  20. G. Sandoz: inStress Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys, B.F. Brown, ed., Naval Research Laboratory, Washington, DC, 1972, pp. 80–145.

    Google Scholar 

  21. Zhou Yu: M.S. Thesis, Harbin Institute of Technology, Harbin, People’s Republic of China, 1984.

  22. Jing Tianfu: M.S. Thesis, Harbin Institute of Technology, Harbin, People’s Republic of China, 1983.

  23. G. Sandoz:Metall. Trans., 1971, vol. 2, pp. 1055–63.

    Article  CAS  Google Scholar 

  24. L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, and R.E. Weber:Handbook of Auger Electron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corporation, Eden Prairie, MN, 1978, pp. 5–15.

    Google Scholar 

  25. S. Craig, G.L. Harding, and R. Payling:Surf. Sci., 1983, vol. 124, pp. 591–601.

    Article  CAS  Google Scholar 

  26. G.F. Li, R.G. Wu, and T.C. Lei: Harbin Institute of Technology, Harbin, People’s Republic of China, unpublished research, 1991.

  27. G.M. Pressouyre:Metall. Trans. A, 1979, vol. 10A, pp. 1571–73.

    CAS  Google Scholar 

  28. G.M. Pressouyre:Metall. Trans. A, 1983, vol. 14A, pp. 2189–93.

    CAS  Google Scholar 

  29. J.P. Hirth:Metall. Trans. A, 1980, vol. 11 A, pp. 861–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G.F., Wu, R.G. & Lei, T.C. Carbide- matrix interface mechanism of stress corrosion cracking behavior of high-strength CrMo steels. Metall Trans A 23, 2879–2885 (1992). https://doi.org/10.1007/BF02651766

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651766

Keywords

Navigation