Skip to main content
Log in

Interaction mechanisms between ceramic particles and atomized metallic droplets

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The present study was undertaken to provide insight into the dynamic interactions that occur when ceramic particles are placed in intimate contact with a metallic matrix undergoing a phase change. To that effect, Al-4 wt pct Si/SiCp composite droplets were synthesized using a spray atomization and coinjection approach, and their solidification microstructures were studied both qualitatively and quantitatively. The present results show that SiC particles (SiCp) were incor- porated into the matrix and that the extent of incorporation depends on the solidification con- dition of the droplets at the moment of SiC particle injection. Two factors were found to affect the distribution and volume fraction of SiC particles in droplets: the penetration of particles into droplets and the entrapment and/or rejection of particles by the solidification front. First, during coinjection, particles collide with the atomized droplets with three possible results: they may penetrate the droplets, adhere to the droplet surface, or bounce back after impact. The extent of penetration of SiC particles into droplets was noted to depend on the kinetic energy of the particles and the magnitude of the surface energy change in the droplets that occurs upon impact. In liquid droplets, the extent of penetration of SiC particles was shown to depend on the changes in surface energy, ΔEs, experienced by the droplets. Accordingly, large SiC particles encoun- tered more resistance to penetration relative to small ones. In solid droplets, the penetration of SiC particles was correlated with the dynamic pressure exerted by the SiC particles on the droplets during impact and the depth of the ensuing crater. The results showed that no pene- tration was possible in such droplets. Second, once SiC particles have penetrated droplets, their final location in the microstructure is governed by their interactions with the solidification front. As a result of these interactions, both entrapment and rejection of SiC particles occurred during droplet solidification. A comparison of the present results to those anticipated from well-established kinetic and thermodynamic models led to some interesting findings. First, the models proposed by Boiling and Cisse[24] and Chernovet al.[58] predict relative low critical interface velocities necessary for entrapment, inconsistent with the present experimental findings. Second, although the observed correlation between the critical front velocity and droplet diameter was generally consistent with that predicted by Stefanescuet a/.’s model,[27] the dependence on the size of SiC particles was not. In view of this discrepancy, three possible mechanisms were proposed to account for the experimental findings: nucleation of α-Al on SiC particles, entrapment of SiC particles between primary dendrite arms, and entrapment of SiC particles between secondary dendrite arms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.V. Nair, J.K. Tien, and R.C. Bates:Int. Met. Rev., 1985, vol. 30, pp. 275–90.

    CAS  Google Scholar 

  2. V.C. Nardone and K.W. Prewo:Scripta Metall., 1986, vol. 20, pp. 43–48.

    Article  CAS  Google Scholar 

  3. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia:J. Mater. Sci., 1991, vol. 26, pp. 1137–56.

    Article  CAS  Google Scholar 

  4. B.F. Quigley, G.J. Abbaschian, R. Wunderlin, and R. Mehrabian:Metall. Trans. A, 1982, vol. 13A, pp. 93–100.

    CAS  Google Scholar 

  5. T.Z. Kattamis and T. Suganuma:Mater. Sci. Eng., 1990, vol. A128, pp. 241–52.

    CAS  Google Scholar 

  6. R. Mehrabian, R.G. Riek, and M.C. Flemings:Metall. Trans., 1974, vol. 5, pp. 1899–1905.

    Article  CAS  Google Scholar 

  7. F.M. Hoskings, F.F. Portillo, R. Wunderlin, and R. Mehrabian:J. Mater. Sci., 1982, vol. 17, pp. 477–98.

    Article  Google Scholar 

  8. R. Mehrabian:MRS Symp., 1988, vol. 120, pp. 3–21.

    CAS  Google Scholar 

  9. T.W. Clyne, M.G. Bader, G.R. Cappleman, and P.A. Hubert:J. Mater. Sci., 1985, vol. 20, pp. 85–96.

    Article  CAS  Google Scholar 

  10. A. Mortensen, M.N. Gungor, J.A. Cornie, and M.C. Flemings:J. Met., 1986, vol. 40 (3), pp. 30–35.

    Google Scholar 

  11. J.A. Cornie, Y.M. Chiang, D.R. Uhlmann, A. Mortensen, and J. Collins:Bull. Am. Ceram. Soc., 1986, vol. 65 (2), pp. 293–304.

    CAS  Google Scholar 

  12. T.W. Clyne and J.F. Mason:Metall. Trans. A, 1987, vol. 18A, pp. 1519–30.

    CAS  Google Scholar 

  13. X. Liang, H.K. Kim, J.C. Earthman, and E.J. Lavernia:Mater. Sci. Eng. A, 1992, vol. A153, pp. 646–53.

    CAS  Google Scholar 

  14. J. White, I.G. Palmer, I.R. Hughes, and S.A. Court:Aluminum- Lithium Alloys V, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., MCEP, Birmingham, United Kingdom, 1989, vol. 3, pp. 1635–45.

    Google Scholar 

  15. K.A. Kojima, R.E. Lewis, and M.J. Kaufman:Aluminum-Lithium Alloys V, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., MCEP, Birmingham, United Kingdom, 1989, vol. 3, pp. 85–94.

    Google Scholar 

  16. W. Khal, J. Leupp, Swiss Aluminum:The Materials Revolution Through 90’s. Droplet Metal Matrix Composites, Magnetics, Proc. Conf., BNF Materials Technology Center, Wantage, United Kingdom, 1989, pp. 8.1–8.15.

    Google Scholar 

  17. P.K. Rohatgi, R. Asthana, and F. Yarandi: inSolidification of Metal Matrix Composites, P.K. Rohatgi, ed., TMS, Warrendale, PA, 1990, pp. 51–75.

    Google Scholar 

  18. A. Mortensen, J.A. Cornie, and M.C. Flemings:Metall. Trans. A, 1988, vol. 19A, pp. 709–21.

    CAS  Google Scholar 

  19. J.D. Bryant, J.R. Maisano, D.T. Winter, and A.R.H. Barrett:Scripta Metall., 1990, vol. 24, pp. 2209–14.

    Article  CAS  Google Scholar 

  20. A. Mortensen: inSolidification of Metal Matrix Composites, P.K. Rohatgi, ed., TMS, Warrendale, PA, 1990, pp. 1–21.

    Google Scholar 

  21. D.M. Stefanescu, A. Moitra, A.S. Kacar, and B.K. Dhindaw:Metall. Trans. A, 1990, vol. 21A, pp. 231–39.

    CAS  Google Scholar 

  22. R. Asthana, S. Das, T.K. Dan, and P.K. Rohatgi:J. Mater. Sci. Lett., 1986, vol. 5, pp. 1083–86.

    Article  CAS  Google Scholar 

  23. D.R. Uhlmann, B. Chalmers, and K.A. Jackson:J. Appl. Phys., 1964, vol. 35, pp. 2986–93.

    Article  CAS  Google Scholar 

  24. G.F. Boiling and J. Cisse:J. Cryst. Growth, 1971, vol. 10, pp. 56–66.

    Article  Google Scholar 

  25. T. Ertuk, J.A. Cornie, and R.G. Dixon:Interface in Metal Matrix Composites, A.K. Dhingra and S.G. Fishman, eds., TMS-AIME, Warrendale, PA, 1986, pp. 239–53.

    Google Scholar 

  26. M.K. Surappa and P.K. Rohatgi:J. Mater. Sci. Lett., 1981, vol. 16, pp. 562–64.

    CAS  Google Scholar 

  27. D.M. Stefanescu, B.K. Dhindaw, A.S. Kacar, and A. Moitra:Metall. Trans. A, 1988, vol. 19A, pp. 2847–55.

    CAS  Google Scholar 

  28. M. Gupta, F.A. Mohamed, and E.J. Lavernia:Int. J. Rapid Solid., 1991, vol. 6, pp. 247–84.

    CAS  Google Scholar 

  29. P.K. Rohatgi, R. Asthana, and S. Das:Int. Met. Rev., 1986, vol. 31, pp. 115–39.

    CAS  Google Scholar 

  30. E.A. Brandes:Smithell’s Metals Reference Book, Butterworth’s, London, 1983, pp. 22.3–22.22.

    Google Scholar 

  31. R. Hulteren, R.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley:Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973, pp. 210–12.

    Google Scholar 

  32. Manoj Gupta, Farghalli Mohamed, and Enrique Lavernia:Metall. Trans. A, 1992, vol. 23A, pp. 831–43.

    CAS  Google Scholar 

  33. Manoj Gupta, Farghalli Mohamed, and Enrique Lavernia:Metall. Trans. A, 1992, vol. 23A, pp. 845–50.

    CAS  Google Scholar 

  34. M. Gupta, J. Juarez-Islas, W.E. Frazier, F.A. Mohamed, and E.J. Lavernia:Metall. Trans. B, 1992, vol. 23B, in press.

  35. E.J. Lavernia, T. Srivatsan, and F.A. Mohamed:J. Mater. Sci., 1990, vol. 25, pp. 1137–58.

    CAS  Google Scholar 

  36. T.S. Srivatsan, R. Auradkar, E.J. Lavernia, and A. Prakash:Mater. Trans., Japan Inst. of Met., 1991, vol. 32(5), pp. 473–79.

    CAS  Google Scholar 

  37. E.J. Lavernia, E. Gutierrez, and J. Baram:Mater. Sci. Eng., 1991, vol. A132, pp. 119–33.

    CAS  Google Scholar 

  38. Y. Wu and E.J. Lavernia:J. Met., 1991, vol. 43 (8), pp. 16–23.

    CAS  Google Scholar 

  39. B.P. Bewlay and B. Cantor:Metall. Trans. B, 1990, vol. 21B, pp. 899–912.

    Article  CAS  Google Scholar 

  40. E.M. Gutierrez-Miravete, E.J. Lavernia, G.M. Trapaga, J. Szekely, and N.J. Grant:Metall. Trans. A, 1989, vol. 20A, pp. 71–85.

    CAS  Google Scholar 

  41. H. Kurten, J. Raasch, and H. Rumpf:Chemie-Ingenieur-Technik, 1966, vol. 38, pp. 941–48.

    Article  Google Scholar 

  42. R. Tiwari and H. Herman:Scripta Metall. Mater., 1991, vol. 25, pp. 1103–07.

    Article  CAS  Google Scholar 

  43. CG. Levi and M. Mehrabian:Metall. Trans. A, 1982, vol. 13A, pp. 13–23.

    CAS  Google Scholar 

  44. R. Mehrabian:Int. J. Mater. Rev., 1982, vol. 27, pp. 185–208.

    CAS  Google Scholar 

  45. F.H. Samuel:Metall. Trans. A, 1986, vol. 17A, pp. 73–91.

    CAS  Google Scholar 

  46. W.J. Boettinger, L. Bendersky, and J.G. Early:Metall. Trans. A, 1986, vol. 17A, pp. 781–90.

    CAS  Google Scholar 

  47. CG. Levi:Metall. Trans. A, 1988, vol. 19A, pp. 699–708.

    CAS  Google Scholar 

  48. L.M. Pan, N. Saunders, and P. Tsakiropoulos:Mater. Sci. Technol., 1989, vol. 5, pp. 609–12.

    CAS  Google Scholar 

  49. S.Y. Oh, J.A. Conie, and K.C. Russell:Ceram. Eng. Sci. Proc, 1987, vol. 8, pp. 12–36.

    Google Scholar 

  50. E.J. Lavernia, E.M. Gutierrez, J. Szekely, and N.J. Grant:Int. J. Rapid Solid., 1988, vol. 4, pp. 89–124.

    CAS  Google Scholar 

  51. E.M. Gutierrez, E.J. Lavernia, G.M. Trapaga, and J. Szekely:Int. J. Rapid Solid., 1988, vol. 4, pp. 125–50.

    Google Scholar 

  52. O. Salas and C. G. Levi:Int. J. Rapid Solid, 1988, vol. 4, pp. 1–21.

    CAS  Google Scholar 

  53. J.P. Hirth:Metall. Trans. A, 1978, vol. 9A, pp. 401–04.

    CAS  Google Scholar 

  54. C.V. Thompson and F. Spaepen:Acta Metall., 1983, vol. 31, pp. 2021–27.

    Article  CAS  Google Scholar 

  55. CG. Levi:Metall. Trans. A, 1982, vol. 13A, pp. 221–34.

    CAS  Google Scholar 

  56. D.M. Stefanescu, R. Rana, A. Moitra, and S. Kacar: inSolidification of Metal Matrix Composites, P.K. Rohatgi, ed., TMS, Warrendale, PA, 1989, pp. 77–89.

    Google Scholar 

  57. J. Cisse, G.F. Boiling, and H.W. KernMetall. Trans. B, 1975, vol. 6B, pp. 195–97.

    CAS  Google Scholar 

  58. A.A. Chernov, D.E. Temkin, and A.M. Melnikova:Soviet Phys. Cryst., 1976, vol. 21, pp. 369–74.

    Google Scholar 

  59. S.R. Coriell and D. Turnbull:Acta Metall., 1982, vol. 30, pp. 2135–39.

    Article  CAS  Google Scholar 

  60. Y. Wu: Ph.D. Dissertation, University of California-Irvine, Irvine, CA, 1991.

  61. V. Laurent, D. Chatain, and N. Eustathopoulos:J. Mater. Sci., 1987, vol. 22, pp. 244–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Lavernia, E.J. Interaction mechanisms between ceramic particles and atomized metallic droplets. Metall Trans A 23, 2923–2937 (1992). https://doi.org/10.1007/BF02651770

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651770

Keywords

Navigation