Skip to main content
Log in

Interdiffusion in the MgO-Al2O3 spinel with or without some dopants

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

With a view to seek an improved understanding of the DIMOX process, interdiffusion of polycrystalline MgO and Al2O3 in the temperature range 1473 to 1873 K was studied by diffusion couple experiments. The interdiffusivities in the spinel layer were calculated as functions of composition and temperature. The spinel portion of the phase diagram in the system MgO-Al2O3 was determined from carefully measured compositions at the phase boundaries, and the low temperature spinel region of the phase diagram was confirmed from the present results. For Zn2+ as dopant in alumina, the growth rate of spinel thickness seems to increase when compared with that of the diffusion couples without dopant. The samples containing Si4+ as dopant reveal the formation of a glass phase, and the effect of Si4+ on the diffusion process appears to be negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. DebRoy, A. Bandopadhyay, and R. Roy:J. Am. Ceram. Soc., 1994, vol. 77 (5), pp. 1296–1300.

    Article  CAS  Google Scholar 

  2. A.S. Nagelberg, S. Antolin, and A.W. Urquhart:J. Am. Ceram. Soc., 1992, vol. 75 (2), pp. 455–62.

    Article  CAS  Google Scholar 

  3. W.P. Whitney II and V.S. Stubican:J. Phys. Chem. Solids, 1971, vol. 32 (2), pp. 305–12.

    Article  CAS  Google Scholar 

  4. R.E. Carter:J. Am. Ceram. Soc., 1961, vol. 44 (3), pp. 116–20.

    Article  CAS  Google Scholar 

  5. L. Navias:J. Am. Ceram. Soc., 1961, vol. 44 (9), pp. 434–46.

    Article  CAS  Google Scholar 

  6. R.C. Rossi and R.M. Fulrath:J. Am. Ceram. Soc., 1963, vol. 46 (3), pp. 145–49.

    Article  CAS  Google Scholar 

  7. A.M. Alper, R.N. McNally, P.H. Ribbe, and R.C. Doman:J. Am. Ceram. Soc., 1962, vol. 45 (6), pp. 263–68.

    Article  CAS  Google Scholar 

  8. V.S. Stubican and R. Roy:J. Phys. Chem. Solids, 1965, vol. 26, pp. 1293–97.

    Article  CAS  Google Scholar 

  9. G. Yamaguchi and T. Tokuda:Bull. Chem. Soc. Jpn., 1967, vol. 40 (4), pp. 843–51.

    Article  CAS  Google Scholar 

  10. G. Yamaguchi, K. Shirasuka, and M. Munekata:Yogyo-kyokai-shi, 1971, vol. 79 (2), pp. 64–69.

    CAS  Google Scholar 

  11. U.M. Nakano, G. Yamaguchi, and K. Saito:Yogyo-kyokai-shi, 1971, 79 (3), pp. 92–95.

    CAS  Google Scholar 

  12. K.J.D. Mackenzie and M.J. Ryan:J. Mater. Sci, 1981, vol. 16, pp. 579–88.

    Article  CAS  Google Scholar 

  13. G. Yamaguchi, M. Nakano, and R. Uchimura:Yogyo-kyokai-shi, 1971, vol. 79(5), pp. 139–45.

    CAS  Google Scholar 

  14. V.S. Stubican, C. Greskovich, and W.P. Whitney II:Mater. Sci. Res., 1972, vol. 6, pp. 55–62.

    CAS  Google Scholar 

  15. W.P. Whitney II, Ph.D. Thesis, University of Penn State, University Park, PA 16802, USA.

  16. M.S. Newkirk, H.D. Lesher, D.R. White, C.R. Kennedy, A.W. Urquhart, and T.D. Claar:Ceram. Eng. Sci. Proc, 1987, vol. 8 (7), pp. 879–85.

    Article  CAS  Google Scholar 

  17. M.S. Newkirk, A.W. Urquhart, H.R. Zwicker, and E. Breval:J. Mater. Res., 1986, vol. 1 (1), pp. 81–89.

    CAS  Google Scholar 

  18. A.S. Nagelberg:J. Mater. Res., 1992, vol. 7 (2), pp. 265–68.

    CAS  Google Scholar 

  19. M. Sindel, N.A. Travitzky, and N. Claussen:J. Am. Ceram. Soc., 1990, vol. 73 (9), pp. 2615–18.

    Article  CAS  Google Scholar 

  20. A.S. Nagelberg:Solid State Ionics, 1989, vol. 32, pp. 783–88.

    Article  Google Scholar 

  21. S. Antolin, A.S. Nagelberg, and D.K. Creber:J. Am. Ceram. Soc., 1992, vol. 75 (2), pp. 447–54.

    Article  CAS  Google Scholar 

  22. Y. Oishi, K. Ando, H. Kurokawa, and Y. Hiro:J. Am. Ceram. Soc., 1983, vol. 66 (4), pp. C60-C63.

    Article  CAS  Google Scholar 

  23. K.P.R. Reddy and A.R. Cooper:J. Am. Ceram. Soc., 1982, vol. 62 (12), pp. 634–38.

    Article  Google Scholar 

  24. B.C. Harding, D.M. Price, and A.J. Mortlock:Phil. Mag., 1971, vol. 23 (182), pp. 399–408.

    CAS  Google Scholar 

  25. Y.M. Chiang and W. David Kingery:J. Am. Ceram. Soc., 1989, vol. 72 (2), pp. 271–77.

    Article  CAS  Google Scholar 

  26. B. Hallstedt:J. Am. Ceram. Soc., 1992, vol. 75 (6), pp. 1497–1507.

    Article  CAS  Google Scholar 

  27. K. Shirasuka and G. Yamaguchi:Yogyo-Kyokai-shi, 1974, vol. 82 (12), pp. 650–53.

    CAS  Google Scholar 

  28. D.M. Roy, R. Roy, and E.F. Osborn:Am. J. Sci., 1953, vol. 251 (5), pp. 337–61.

    Article  CAS  Google Scholar 

  29. T. Mori:Yogyo-kyokai-shi, 1982, vol. 90 (9), pp. 551–52.

    CAS  Google Scholar 

  30. A.F. Henriksen and W.D. Kingery:Ceramurgia Int., 1979, vol. 5 (1), pp. 11–17.

    Article  CAS  Google Scholar 

  31. C. Wagner:Acta Metall., 1969, vol. 17 (2), pp. 99–107.

    Article  CAS  Google Scholar 

  32. M. Appel:Scripta Metall., 1968, vol. 2 (4), pp. 217–22.

    Article  Google Scholar 

  33. J. Woirgard, P. Mazot, and M. Halbwacks:J. Phys., 1985, vol. C1O, pp. 553–56.

    Google Scholar 

  34. J. Crank:Mathematics of Diffusion, Clarendon Press, Oxford, United Kingdom, 1975, p. 21.

    Google Scholar 

  35. B.J. Wuensch and T. Vasilgs:J. Chem. Phys., 1965, vol. 42 (12), pp. 4113–15.

    Article  CAS  Google Scholar 

  36. S. Antolin, A.S. Nagelberg, and D.K. Creber:J. Am. Ceram. Soc., 1992, vol. 75 (2), pp. 455–62.

    Article  Google Scholar 

  37. O. Knacke, O. Kubaschewski, and K. Hesselmann:Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  38. M. Selleby: Royal Institute of Technology Stockholm, [private communication,] 1994.

  39. Schlakenatlas/Slag Atlas, Verlag Stahleisen m.b.H., Düsseldorf, Germany, 1981, p. 60.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the “n Situ Reactions for Synthesis of Composites, Ceramics, and Intermetallics” symposium, held February 12–16, 1995, at the TMS Annual Meeting in Las Vegas, Nevada, under the auspices of SMD and ASM-MSD (the ASM/TMS Composites and TMS Powder Materials Committees).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., DebRoy, T. & Seetharaman, S. Interdiffusion in the MgO-Al2O3 spinel with or without some dopants. Metall Mater Trans A 27, 2105–2114 (1996). https://doi.org/10.1007/BF02651865

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651865

Keywords

Navigation