Skip to main content
Log in

Computer simulation of microstructural evolution in thin films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The nature of the microstructure of a thin film strongly affects its functionality in electronic applications. For example, the rate of electromigration-induced failure is a function not only of the grain size in an interconnect line, but also of the width and shape of the grain size distribution. We are developing techniques which allow prediction of the relationships between the conditions for thin film processing and the topology and geometry of resulting grain structures. We have simulated two-dimensional microstructural evolution by determining the location of grain boundaries after nucleation and growth of crystalline domains. We have allowed for nucleation under a variety of conditions including constant nucleation rates, decreasing nucleation rates and instantaneous saturation of nucleation sites. We have also allowed for increasing and decreasing growth rates which depend in various ways on the domain size. We have simulated grain growth in two-dimensional structures by allowing boundary and triple point motion in order to reduce the total grain boundary area. The rate and nature of the initial stages of grain growth are strongly affected by the conditions for nucleation and growth. Eventually, however, grain growth appears to proceed as expected from analytical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Pauleau, “Interconnect Materials for VLSI Circuits,”Solid State Technology, Feb. 1987, 61-67.

  2. S. D. S. Malhiet al, IEEE Trans, on Electron Devices ED-32, 258 (1985).

    CAS  Google Scholar 

  3. J.-W. Lee, B. G. Demczyk, K. R. Mountfield and D. E. Laughlin,J. Appl. Physics 61, 3813 (1987) (see also other articles in this issue).

    Article  CAS  Google Scholar 

  4. R. T. Howe,Annals of Biomédical Engineering 14, 187 (1986).

    Article  CAS  Google Scholar 

  5. G. L. Schnable, W. Kern and R. B. Comizzoli,J. Electrochem. Soc. 122, 1092 (1975).

    Article  CAS  Google Scholar 

  6. F. M. d’Heurle and P. S. Ho, Chapter 8 inThin Films—Interdiffusion and Reactions, edited by J. Poate, K.-N. Tu and J. W. Mayer, (Wiley Interscience, 1978), 243.

  7. M. J. Attardo, R. Rutledge, and R. C. Jack,J. Appl. Physics 42, 4343 (1971).

    Article  CAS  Google Scholar 

  8. F. M. d’Heurle and I. Ames,Applied Physics Letters 16, 80 (1970).

    Article  CAS  Google Scholar 

  9. S. Vaidya, T. T. Sheng, and A. K. Sinha,Applied Physics Letters 36, 464 (1980).

    Article  CAS  Google Scholar 

  10. H. J. Frost and C. V. Thompson,Acta Met. 35, 529 (1985).

    Article  Google Scholar 

  11. H. J. Frost, C. V. Thompson, C. L. Howe and J. Whang,Scripta Met. 22, 65 (1987).

    Article  Google Scholar 

  12. H. J. Frost and C. V. Thompson, “Development of Microstructure in Thin Films,” Proceedings of SPIE—The International Society for Optical Engineering, Volume 821, Modeling of Optical Thin Films, M. R. Jacobson chair/editor, Aug. 16-17, 1987, 77-87.

  13. C. V. Thompson, “Observations of Grain Growth in Thin Films,” This Symposium

  14. A. Getis and B. N. Boots,Models of Spatial Processes, (Cambridge, U.K.: Cambridge University Press, 1979).

    Google Scholar 

  15. W. A. Johnson and R. F. Mehl,Trans AIME 135, 416 (1939).

    Google Scholar 

  16. U. R. Evans, Trans.Faraday Society 41, 365 (1945).

    Article  CAS  Google Scholar 

  17. J. L. Meijering,Philips Res. Rep. 8, 270 (1953).

    Google Scholar 

  18. E. N. Gilbert,Annals of Mathematical Statistics 33, 958 (1962).

    Google Scholar 

  19. K-N. Tu, D. A. Smith and B. Z. Weiss,Phys. Rev. B 36, 8948 (1987).

    Article  Google Scholar 

  20. D. A. Smith, K-N. Tu and B. Z. Weiss, “Crystallization of Amorphous CoSi2,” This Symposium

  21. D. Weaire and N. Rivier,Contemp. Physics 25, 59 (1984).

    Article  Google Scholar 

  22. K. W. Mahin, K. Hanson and J. W. Morris, Jr.,Acta Met. 28, 443 (1980).

    Article  CAS  Google Scholar 

  23. T. O. Saetre, O. Hunden and E. Nes,Acta Met. 34, 981 (1986).

    Article  CAS  Google Scholar 

  24. B. N. Boots,Economic Geography 56, 248 (1980).

    Article  Google Scholar 

  25. B. N. Boots,The Canadian Geographer 31, 160 (1987).

    Article  Google Scholar 

  26. B. J. Gellatly and J. L. Finney,J. Non-Crystalline Solids 50, 313 (1982).

    Article  CAS  Google Scholar 

  27. W. Fischer and E. Koch, “Geometrical Packing Analysis of Molecular Compounds,”Z. Kristallog. 150, 245 (1979).

    Article  CAS  Google Scholar 

  28. P. F. Ash and E. D. Bolker,Geometriae Dedicata 20, 209 (1986).

    Article  Google Scholar 

  29. F. Aurenhammer and H. Edelsbrunner,Pattern Recognition 17, 251 (1984).

    Article  Google Scholar 

  30. D. Weaire and J. P. Kermode,Phil. Mag. B 47, L29 (1983);48, 245 (1983);50, 379 (1984).

    CAS  Google Scholar 

  31. J. Wejchert, D. Weaire and J. P. Kermode,Phil. Mag. B 53, 15 (1986).

    CAS  Google Scholar 

  32. M. P. Anderson, D. J. Srolovitz, G. S. Grest, and P. S. Sahni,Acta Met. 32, 783 (1984).

    Article  CAS  Google Scholar 

  33. D. J. Srolovitz, M. P. Anderson, P. S. Sahni, and G. S. Grest,Acta Met. 32, 793 (1984).

    Article  CAS  Google Scholar 

  34. E. A. Ceppi and O. B. Nasello,Scripta Met. 18, 1221 (1984).

    Article  CAS  Google Scholar 

  35. A. Soares, A. C. Ferro and M. A. Fortes,Scripta Met. 19, 1491 (1985).

    Article  CAS  Google Scholar 

  36. S. Yabushita, N. Hatta, S. Kikuchi, and J. Kokado,Scripta Met. 19, 853 (1985).

    Article  CAS  Google Scholar 

  37. V. E. Fradkov, L. S. Shvindlerman, and D. G. Udler,Scripta Met. 19, 1285 (1985).

    Article  Google Scholar 

  38. C. L. Howe,Computer Simulation of Grain Growth in Two Dimensions, M. E. Thesis, Dartmouth College (1987).

  39. C. Wagner,Z. Elektrochem. 65, 581 (1961).

    CAS  Google Scholar 

  40. I. M. Lifshitz and V. V. Slyozov,Zh. Eksp. Teor. Fiz. 35, 479 (1985).

    Google Scholar 

  41. M. Hillert,Acta Met. 13, 227 (1965).

    Article  CAS  Google Scholar 

  42. W. W. Mullins,J. Appl. Phys. 59, 1341 (1986).

    Article  CAS  Google Scholar 

  43. P. A. Beck, M. L. Holtzworth and P. R. Sperry,Trans. AIME 180, 163 (1949).

    Google Scholar 

  44. W. W. Mullins,Acta Met. 6, 414 (1958).

    Article  Google Scholar 

  45. C. V. Thompson, H. J. Frost and F. Spaepen,Acta Met. 35, 887 (1987).

    Article  CAS  Google Scholar 

  46. D. J. Srolovitz, G. S. Grest and M. P. Anderson,Acta Met. 33, 2233 (1985).

    Article  CAS  Google Scholar 

  47. M. P. Anderson, G. S. Grest and D. J. Srolovitz, “Computer simulation of grain growth,” Third International Conference on Progress in Microstructure, Aachen, West Germany, May 4-8, 1987.

  48. A. D. Rollet, D. J. Srolovitz and M. P. Anderson, submitted toActa Met. (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, H.J., Thompson, C.V. Computer simulation of microstructural evolution in thin films. J. Electron. Mater. 17, 447–458 (1988). https://doi.org/10.1007/BF02652132

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652132

Key words

Navigation