Skip to main content
Log in

Fracture mechanics and surface chemistry studies of subcritical crack growth in AISI 4340 steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Coordinated fracture mechanics and surface chemistry experiments were carried out to develop further understanding of environment enhanced subcritical crack growth in high strength steels. The kinetics of crack growth were determined for an AISI 4340 steel (tempered at 204°C) in hydrogen and in water, and the kinetics for the reactions of water with the same steel were also determined. A regime of rate limited (Stage II) crack growth was observed in each of the environments. Stage II crack growth was found to be thermally activated, with an apparent activation energy of 14.7 ±2.9 kJ/mole for crack growth in hydrogen, and 33.5 ± 5.0 kJ/mole in water. Fractographic evidence indicated that the fracture path through the microstructure was the same for these environments, and suggested hydrogen to be the embrittling species for environment enhanced crack growth in hydrogen and in water/water vapor. A slow step in the surface reaction of water vapor with steel was identified, and exhibited an activation energy of 36 ± 14 kJ/ mole. This reaction step was identified to be that for the nucleation and growth of oxide. The hydrogen responsible for embrittlement was presumed to be produced during this reaction. On the basis of a comparison of the activation energies, in conjunction with other supporting data, this slow step in the water/metal surface reaction was unambiguously identified as the rate controlling process for crack growth in water/water vapor. The inhibiting effect of oxygen and the influence of water vapor pressure on environment enhanced subcritical crack growth were considered. The influence of segregation of alloying and residual impurity elements on crack growth was also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. H. Johnson and A. M. Willner:Appl. Mater. Res., 1965, vol. 4, p. 34.

    CAS  Google Scholar 

  2. H. H. Johnson and P. C. Paris:J. Eng. Fract. Mech., 1968, vol. 1, p. 3.

    Article  Google Scholar 

  3. R. P. Wei:Proceedings of Conference-Fundamental Aspects of Stress Cor- rosion Cracking, p. 104, NACE, 1969.

  4. R. P. Wei, S. R. Novak, and D. P. Williams:Mater. Res. Stand., 1972, vol. 12, p. 25.

    Google Scholar 

  5. D. P. Williams and H. G. Nelson:Mer. Trans., 1970, vol. 1, p. 63.

    CAS  Google Scholar 

  6. H. G. Nelson, D. P. Williams, and A. S. Tetelman:Met. Trans., 1971, vol. 2, p. 953.

    CAS  Google Scholar 

  7. J. D. Landes and R. P. Wei:Int. J. Fract., 1973, vol. 9, p. 277.

    Article  CAS  Google Scholar 

  8. S. J. Hudak and R. P. Wei:Met. Trans. A, 1976, vol. 7A, p. 235.

    Article  CAS  Google Scholar 

  9. R. P. Gangloff and R. P. Wei:Met. Trans. A, 1977, vol. 8A, p. 1043.

    CAS  Google Scholar 

  10. W. A. Van der Sluys:J. Eng. Fract. Mech., 1969, vol. 1, p. 447.

    Article  Google Scholar 

  11. H. H. Johnson:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Based Alloys, J. Hochmann, J. Slater, and R. W. Stachle, eds., p. 382, NACE, 1978.

  12. G. G. Hancock and H. H. Johnson:Trans. TMS-AIME, 1966, vol. 236, p. 513.

    CAS  Google Scholar 

  13. W. K. Wilson: Report No. 67-707-BTLPV-R1, Westinghouse Research Labora- tories, Pittsburgh, PA, 1967.

    Google Scholar 

  14. J. P. Hutin and Y. Mizuta: unpublished research, Lehigh University, Bethlehem, Pennsylvania, 1975.

  15. R.P. Wei and G. W. Simmons:Scr. Met., 1976, vol. 10, p. 153.

    Article  CAS  Google Scholar 

  16. P. C. Paris and G. C. Sih:Fracture Toughness Testing and Its Applications, ASTM STP 381, p. 30, ASTM, Philadelphia, PA, 1965.

    Google Scholar 

  17. G. W. Simmons and D. J. Dwyer:Surface Sci., 1975, vol. 48, p. 373.

    Article  CAS  Google Scholar 

  18. D. J. Dwyer, G. W. Simmons, and R. P. Wei:Surface Sci., 1977, vol. 64, p. 617.

    Article  CAS  Google Scholar 

  19. H. G. Nelson and D. P. Williams:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Based Alloys, J. Hochmann, J. Slater, and R. W. Staehle, eds., p. 390, NACE, 1978.

  20. J. D. Landes and R. P. Wei:J. Eng. Mater. Technol, Ser. H, 1973, vol. 95, p. 2.

    CAS  Google Scholar 

  21. I.M. Bernstein:Met. Trans., 1970, vol. 1, p. 3143.

    CAS  Google Scholar 

  22. M. L. Wayman and G. C. Smith:Met. Trans., 1970, vol. 1, p. 1189.

    Article  CAS  Google Scholar 

  23. B. B. Rath and I. M. Bernstein:Met. Trans., 1972, vol. 2, p. 2845.

    Google Scholar 

  24. I. M. Bernstein:Mater. Sci. Eng., 1970, vol. 6, p. 1.

    Article  CAS  Google Scholar 

  25. A. Joshi and D. F. Stein:Temper Embrittlement of Low Alloy Steels, p. 59, ASTM, STP 499, 1972.

  26. A. Joshi, L. E. Davis, and P. W. Palmberg:Methods of Surface Analysis, A. W. Czanderna, ed., Elsevier Publishing Co., N.Y., 1975.

    Google Scholar 

  27. Melvin Avrami:J. Chem. Phys., 1939, vol. 7, p. 1103.

    Article  CAS  Google Scholar 

  28. Melvin Avrami:J. Chem. Phys., 1940, vol. 8, p. 212.

    Article  CAS  Google Scholar 

  29. Melvin Avrami:J. Chem.Phys., 1941, vol. 9, p. 117.

    Article  Google Scholar 

  30. William A. Johnson and Robert F. Mehl:Trans. AIME, 1939, vol. 135, p. 416.

    Google Scholar 

  31. R. Suhrmann, J. M. Heras, L. Viscido De Heras, and G. Wedler:Ber. Bunsenges. Physil. Chem., 1969, vol. 72, p. 855.

    Google Scholar 

  32. D. Lazarov and G. Bliznakov:Z. Physik. Chem., 1966, vol. 233, p. 255.

    CAS  Google Scholar 

  33. G. M. Kornacheva, R. Kh. Burshtein, and N. A. Shurmovakaya:Electrochimiya, 1973, vol. 9, p. 81.

    CAS  Google Scholar 

  34. S. Chang and W. H. Wade:J. Colloid. Interface Sci., 1970, vol. 34, p. 413.

    Article  CAS  Google Scholar 

  35. K. Kishi and S. Ikeda:Bull. Chem. Soc. Japan, 1973, vol. 46, p. 341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, G.W., Pao, P.S. & Wei, R.P. Fracture mechanics and surface chemistry studies of subcritical crack growth in AISI 4340 steel. Metall Trans A 9, 1147–1158 (1978). https://doi.org/10.1007/BF02652220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652220

Keywords

Navigation