Skip to main content
Log in

Crystallographic and fractographic studies of hydrogen- induced cracking in purified iron and iron- silicon alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 1978

Abstract

Crystallographic and fractographic studies have been carried out on hydrogen charged purified iron and on iron-silicon alloys with silicon contents up to 3 pct. The specimens could be cracked by cathodically charging with hydrogen even without the application of an external stress. An experimental technique was developed which enabled the exposure of the fracture surface formed purely by hydrogen charging, and to contrast this with an adjacent mechanically induced fracture surface. In the case of purified iron, hydrogen induced cracks are found to occur on potential slip planes whereas in the case of iron-3 pct silicon, the crack follows the observed cleavage plane. Intermediate silicon content alloys showed transitional behavior. In agreement with the variation of crack plane in the alloys, the fracture surface appearances was also drastically different, reflecting the change in intrinsic toughness with alloy content. The observed transition from slip plane cracking to cleavage plane cracking was found to occur near a silicon content of 0.7 pct. The observed behavior is discussed in terms of how the intrinsic toughness of the ironbased lattice affects how hydrogen-induced cracks are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Beachem:Met. Tram., 1972, vol. 3, p. 437.

    CAS  Google Scholar 

  2. F. Terasaki and F. Nakasato:Proceedings of Conf. on Mechanism of Delayed Fracture Caused by Hydrogen, p. 165, Tokyo, Japan, 1975.

  3. A. S. Tetelman and W. D. Robertson:Trans. TMS-AIME, 1962, vol. 224, p. 775.

    CAS  Google Scholar 

  4. A. S. Tetelman and W. D. Robertson:Acta Met., 1963, vol. 11, p. 415.

    Article  CAS  Google Scholar 

  5. M. Gell and W.D. Robertson:Acta Met., 1966, vol. 14, p. 481.

    Article  CAS  Google Scholar 

  6. N. P. Allen, B. E. Hopkins, and J. E. McLennan:Proc. Roy. Soc. (London), 1956, A234,p. 221.

    Google Scholar 

  7. E. Schmid and W. Boas:Kristallplastizitat, p. 199, Springer, Berlin, 1935.

    Google Scholar 

  8. I. M. Bernstein:Met. Trans., 1970, vol. 1, p. 3143.

    CAS  Google Scholar 

  9. I. M. Bernstein:Mater. Sci. Eng., 1970, vol. 6, p. 1.

    Article  CAS  Google Scholar 

  10. K. Kitajima:Proceedings of Conf. on Mechanism of Delayed Fracture Caused by Hydrogen, p. 35, Tokyo, Japan, 1975.

  11. Y. Kikuta, T. Araki, and T. Kuroda: Osaka University, Osaka, Japan, unpublished research, 1974.

  12. C. Ouchi and I. M. Bernstein: Carnegie-Mellon University, Pa., unpublished research, 1974.

  13. F. Nakasato and I. M. Bernstein: Abstract Bulletin, TMS-AIME Fall Meeting, p. 2, Niagara Falls, New York, 1976.

  14. M. Gell, J. P. Briant, and W. D. Robertson:Trans. TMS-AIME, 1967, vol. 239, p.813.

    Google Scholar 

  15. F. Terasaki, F. Nakasato, and S. Okamoto:Tetsu-To-Hagane, 1973, vol. 59, p. S574.

    Google Scholar 

  16. F. Terasaki and S. Okamoto:Tetsu-To-Hagane, 1974, vol. 60, p. S576.

    Google Scholar 

  17. W. C. Leslie, R. J. Sober, S. G. Babcock, and S. J. Green:Trans. ASM, 1969, vol. 62, p. 690.

    CAS  Google Scholar 

  18. W. C. Leslie:Met. Trans., 1972, vol. 3, p. 5.

    CAS  Google Scholar 

  19. C. S. Barrett:Structure of Metals, McGraw-Hill, New York, 1943, p. 292.

    Google Scholar 

  20. M. Gell: Ph.D. Thesis, Yale University, 1965.

  21. A. H. Cottrell:Trans. TMS-AIME, 1958, vol. 212, p. 192.

    CAS  Google Scholar 

  22. C. Zapffe and C. Sims:Trans. AIME, 1941, vol. 145, p. 225.

    Google Scholar 

  23. C. Zapffe:Trans. ASM, 1947, vol. 39,p. 190.

    Google Scholar 

  24. A. S. Tetelman:Fracture of Solids, p. 671, Gordon and Breach, 1963.

  25. I. M. Bernstein, R. Garber, and G. M. Pressouyre:Effect of Hydrogen on Behavior of Materials, A. W. Thompson and I. M. Bernstein, eds., p. 37, TMS-AIME, 1976.

  26. I. M. Bernstein and A. W. Thompson:Mechanisms of Environment Sensitive Cracking of Materials, P. R. Swann and F. P. Ford, eds., p. 412, The Metals Society, 1978.

  27. G. M. Pressouyre: Ph.D. Thesis, Carnegie-Mellon University, 1977, (also ONR report NR 036-099-7).

  28. G. H. Koch, A. J. Bursle, and E. N. Pugh:Met. Trans. A, 1978, vol. 9A, p. 179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly at Carnegie-Mellon University.

An erratum to this article is available at http://dx.doi.org/10.1007/BF02663426.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakasato, F., Bernstein, I.M. Crystallographic and fractographic studies of hydrogen- induced cracking in purified iron and iron- silicon alloys. Metall Trans A 9, 1317–1326 (1978). https://doi.org/10.1007/BF02652256

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652256

Keywords

Navigation