Skip to main content
Log in

Prediction of Columnar to Equiaxed Transition during Diffusion-Controlled Dendritic Alloy Solidification

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model is presented to predict the columnar to equiaxed transition (CET) in alloy castings. The model is based on a multiphase approach and accounts for heat and solute diffusion, as well as for grain nucleation, growth, and morphology. The model equations are applicable to both columnar and equiaxed dendritic solidification, thus offering an efficient single-domain formulation. A fixed grid, fully implicit finite-difference procedure is employed in the numerical solution, and a novel front tracking technique is incorporated that is also implicit in nature and readily applies to multidimensional situations. Calculations are performed for one-dimensional (1-D) and two-dimensional (2-D) castings of Al-Cu and Sn-Pb alloys. The calculated CET positions are compared with previous measurements in a (1-D) ingot cast under well-controlled conditions, and good agreement is found. The effects of various casting parameters on the CET are numerically explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

constant in Eq. [11], m (K/s)1/3

C :

concentration of a chemical species, wt Pct

C P :

volumetric specific heat, J/m3 · K

D :

mass diffusion coefficient, m2/s

G :

temperature gradient, K/m

h :

chill heat-transfer coefficient, W/m2 · K

H :

enthalpy, J/m3

Iv :

Ivantsov function

k :

thermal conductivity, W/m · K

l :

solute diffusion length, m

L :

casting length, m

m 1 :

liquidus line slope, K/wt Pct

n :

equiaxed nuclei density, m-3

Pe :

envelope Peclet number, wneRf/Dl

Pe t :

tip Peclet number, VtRt/(2Dl)

R :

radius, m

S :

interfacial area concentration, m-1

t :

time, s

T :

temperature, K

T :

cooling rate, dT/dt, K/s

V t :

dendrite tip velocity, m/s

w ne :

envelope velocity, m/s

x :

axial distance, m

y :

coordinate, m

α :

angle of columnar grains with respect to the axial direction

Γ:

Gibbs-Thomson coefficient in the growth model for dendrite tips, kg/m3 · s

δt:

smaller time step, s

Δh:

latent heat of phase change, J/m3

Δt:

larger time step, s

ΔT0 :

pouring superheat, T0-TL(C0), K

ΔTN :

nucleation undercooling, K

ε:

volume fraction

k :

partition coefficient, wt pct/wt Pct

λ:

dendrite arm spacing, μm

ϕe :

shape factor of the dendrite envelope, ϕe = 1 in this article

Ω:

solutal supersaturation, (Ce - 〈C11)/[Ce(1- k)

a :

ambient

cf :

columnar front

d :

interdendritic liquid

e :

dendrite envelope

E :

eutectic point

f :

final

l :

extradendritic liquid

L :

liquidus

Id :

extradendritic/interdendritic liquid interface

m :

melting point of pure metals

nb :

neighboring coefficients in the discretized energy equation, see Patankar[25]

O :

initial state

P :

nodal point

s :

solid

sd :

solid-interdendritic liquid interface

t :

dendrite tip

References

  1. B. Chalmers:Principles of Solidification, John Wiley, New York, NY, 1964.

    Google Scholar 

  2. A. Ohno:Solidification: The Separation Theory and Its Practical Applications, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  3. W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans. Tech. Publications, Switzerland, 1989.

    Google Scholar 

  4. S.G.R. Brown and J.A. Spittle:Mater. Sci. Technol, 1989, vol. 5, pp. 362–68.

    CAS  Google Scholar 

  5. J.D. Hunt:Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.

    Article  CAS  Google Scholar 

  6. S.C. Flood and J.D. Hunt:Appl. Sci. Res., 1987, vol. 44, pp. 27–42.

    Article  CAS  Google Scholar 

  7. S.C. Flood and J.D. Hunt:J. Crystal Growth, 1987, vol. 82, pp. 552–60.

    Article  CAS  Google Scholar 

  8. M. Rappaz:Int. Met. Rev., 1989, vol. 34, pp. 93–123.

    CAS  Google Scholar 

  9. B. Giovanola and W. Kurz:Metall. Trans. A, 1990, vol. 21A, pp. 260–63.

    CAS  Google Scholar 

  10. P. Zhu and R.W. Smith:Acta Metall. Mater., 1992, vol. 40, pp. 3369–79.

    Article  CAS  Google Scholar 

  11. M. Rappaz and Ch.-A. Gandin:Acta Metall. Mater., 1993, vol. 41, pp. 345–60.

    Article  CAS  Google Scholar 

  12. R.B. Mahapatra and F. Weinberg:Metall. Trans. B, 1987, vol. 18B, pp. 425–32.

    CAS  Google Scholar 

  13. I. Ziv and F. Weinberg:Metall. Trans. B, 1989, vol. 20B, pp. 731–34.

    CAS  Google Scholar 

  14. F. Weinberg: inProc. F. Weinberg Int. Symp. on Solidification Processing, J.E. Lait and I.V. Samarasekera, eds., Pergamon Press, New York, NY, 1990, pp. 3–11.

    Google Scholar 

  15. C.Y. Wang and C. Beckermann:Metall. Trans. A, 1993, vol. 24A, pp. 2787–2802.

    CAS  Google Scholar 

  16. C.Y. Wang and C. Beckermann:Mater. Sci. Eng. A, 1993, vol. A171,pp. 199–211.

    CAS  Google Scholar 

  17. W. Kurz, B. Giovanola, and R. Trivedi:Acta Metall., 1986, vol. 34, pp. 823–30.

    Article  CAS  Google Scholar 

  18. J. Lipton, M.E. Glicksman, and W. Kurz:Mater. Sci. Eng., 1984, vol. 65, pp. 57–63.

    Article  CAS  Google Scholar 

  19. D.M. Stefanescu, G. Upadhya, and D. Bandyopadhyay:Metall. Trans. A, 1990, vol. 21A, pp. 997–1005.

    CAS  Google Scholar 

  20. J.D. Hunt:Solidification and Casting of Metals, Metals Society, London, 1979.

    Google Scholar 

  21. W. Kurz and D.J. Fisher:Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  CAS  Google Scholar 

  22. H. Jones:Mater. Sci. Eng., 1984, vol. 65, pp. 145–56.

    Article  CAS  Google Scholar 

  23. M. Rappaz and Ph. Thevoz:Acta Metall., 1987, vol. 35, pp. 1487–97.

    Article  CAS  Google Scholar 

  24. Ph. Thevoz, J.L. Desbiolles, and M. Rappaz:Metall. Trans. A, 1989, vol. 20A, pp. 311–22.

    CAS  Google Scholar 

  25. S.V. Patankar:Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., New York, NY, 1980.

    Google Scholar 

  26. A.A. Tseng, J. Zou, H.P. Wang, and S.R.H. Hoole:J. Comput. Phys., 1992, vol. 102, pp. 1–17.

    Article  CAS  Google Scholar 

  27. V.R. Voller:Numer. Heat Transfer, Part B, 1990, vol. 17, pp. 155–69.

    Google Scholar 

  28. T.P. Battle and R.D. Pehlke:Metall. Trans. B, 1990, vol. 21B, pp. 357–75.

    CAS  Google Scholar 

  29. D.R. Poirier:Metall. Trans. A, 1988, vol. 19A, pp. 2349–54.

    CAS  Google Scholar 

  30. M. Gunduz and J.D. Hunt:Acta Metall., 1985, vol. 33, pp. 1651–72.

    Article  CAS  Google Scholar 

  31. J. Lipton, W. Heinemann, and W. Kurz:Arch. Eisenhüttenwes., 1984, vol. 55, pp. 195–200.

    CAS  Google Scholar 

  32. S.G.R. Brown and J.A. Spittle: inModeling of Casting, Welding and Advanced Solidification Processes V, M. Rappaz, M.R. Ozgu, and K.W. Mahin, eds., TMS-AIME, Warrendale, PA, 1991, pp. 395–402.

    Google Scholar 

  33. V.K. Suri, N. El-Kaddah, and J.T. Berry:AFS Trans., 1991, vol. 99, pp. 187–91.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C.Y., Beckermann, C. Prediction of Columnar to Equiaxed Transition during Diffusion-Controlled Dendritic Alloy Solidification. Metall Mater Trans A 25, 1081–1093 (1994). https://doi.org/10.1007/BF02652282

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652282

Keywords

Navigation