Skip to main content
Log in

Hydride embrittlement in ZIRCALOY-4 plate: Part II. interaction between the tensile stress and the hydride morphology

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of an applied tensile stress on the hydrides morphology in ZIRCALOY-4 was studied. To this end, the residual stresses around the hydride caused by the hydride precipitation was first evaluated. Considering the disability to predict hydride transformation stresses by ordinary macroscopical mechanical calculation in previous studies, X-ray diffraction (XRD) profile analysis and transmission electron microscopy (TEM) observations were carried out to quantify the microstructural evolution in hydrided ZIRCALOY-4. The residual microstrains and microstresses in the matrix and around the hydride were thus estimated. The big discrepancy between our results and the existing studies were explained by the major self-accomodation of phase transformation deformation remaining inside the hydrides and the local plastic accommodation of ZIRCALOY-4. In order to study the stress effect on hydride orientation and to estimate the hydride orientation threshold stresses, hydrogen was introduced into the specimens under tensile stress. A quantitative technique was used to evaluate the susceptibility to perpendicular hydride formation under the influence of texture, residual stresses, and externally applied tensile stresses, following an improved approach that had been first developed by Sauthoff and then applied to Zr-H system by Puls. Both analytical and experimental results indicate that the threshold stress for producing perpendicular hydrides varies with the microstructural features, the yield strength, and the residual stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Bai: Ph.D. Thesis, Ecole Centrale Paris, Paris, 1991.

    Google Scholar 

  2. J.B. Bai, C. Prioul, and D. François:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1185–97.

    CAS  Google Scholar 

  3. C.J. Simpson, O.A. Kupcis, and D.V. Leemans: ASTM STP 633, 1977, pp. 630-42.

  4. P.H. Davies and C.P. Steams: ASTM STP 905, 1986, pp. 379-400.

  5. I. Aitchison: ASTM STP 458, {dy1969}, pp. 160-78.

  6. J.J. Kearns and C.R. Woods:J. Nucl. Mater., 1966, vol. 20, pp. 241–61.

    Article  CAS  Google Scholar 

  7. M.P. Puls: inSolute-Defect Interaction, S. Saimoto, G.R. Purdy, and G.V. Kidson, eds., Pergamon Press, New York, NY, 1986, pp. 426–33.

    Google Scholar 

  8. J.B. Bai, C. Prioul, J. Pelchat, and F. Barcelo:Proc. Int. Conf. ANS/ENS, Avignon, France, April 21–24, 1991, pp. 223–37.

    Google Scholar 

  9. J.B. Bai, C. Prioul, and D. François:Proc. 6th Int. Conf. on Materials (ICM-6), Kyoto, Japan, July 28–August 2, {dy1991}, pp. 731-36.

  10. M. Leger and A. Donner:Can. Metall. Q., 1985, vol. 24, pp. 235–43.

    CAS  Google Scholar 

  11. J.B. Bai, C. Prioul, and D. Fançois:J. Adv. Sci., 1991, vol. 3, pp. 188–200.

    CAS  Google Scholar 

  12. J.B. Bai, N. Ji, D. Gilbon, and J. L. Lebrun:Scripta Metall., 1992, vol. 26, pp. 369–74.

    Article  CAS  Google Scholar 

  13. N. Ji and J.L. Lebrun:J. Mater. Sci. Lett., 1989, vol. 8, pp. 1127–30.

    Article  CAS  Google Scholar 

  14. C.E. Ells:J. Nucl. Mater., 1968, vol. 28, pp. 129–51.

    Article  CAS  Google Scholar 

  15. J.S. Bradbrook, G.W. Lorimer, and N. Ridley:J. Nucl. Mater., 1972, vol. 42, pp. 142–60.

    Article  CAS  Google Scholar 

  16. A. Akhtar:J. Nucl. Mater., 1977, vol. 64, pp. 86–92.

    Article  CAS  Google Scholar 

  17. G.J.C. Carpenter:J. Nucl. Mater., 1973, vol. 48, pp. 264–66.

    Article  CAS  Google Scholar 

  18. T. Mori and K. Tanaka:ActaMetall., 1973, vol. 21, pp. 571–74.

    Google Scholar 

  19. B.W. Leiten and M.P. Puls:Metall. Trans. A, pp. 797-806.

  20. J.B. Bai:J. Mater. Sci. Lett., 1993, vol. 12, pp. 677–80.

    Article  CAS  Google Scholar 

  21. S.R. MacEwen, N. Christodoulou, and A. Salinas-Rodriguez:Metall. Trans. A, 1990, vol. 21A, pp. 1083–95.

    CAS  Google Scholar 

  22. V. Perovic, G.C. Weatherly, and C.J. Simpson:Acta. Metall., 1983, vol. 31, pp. 1381–91.

    Article  CAS  Google Scholar 

  23. C.E. Ells:J. Nucl. Mater., 1970, vol. 35, pp. 306–15.

    Article  CAS  Google Scholar 

  24. G. Sauthoff: Z.Metallkd., 1975, vol. 66, pp. 106–09.

    CAS  Google Scholar 

  25. G. Sauthoff: Z.Metallkd., 1976, vol. 67, pp. 25–29.

    CAS  Google Scholar 

  26. G. Sauthoff: Z.Metallkd., 1977, vol. 68, pp. 500–05.

    CAS  Google Scholar 

  27. Y. Takao, T.W. Chou, and M. Taya:Trans. ASME, 1982, vol. 49, pp. 536–46.

    CAS  Google Scholar 

  28. M.P. Puls:Hydrogen-Induced Delayed Cracking: Part 2. Effect of Stress on Nucleation, Growth and Coarsening of Zirconium Hydride Precipitates, AECL-8381, Atomic Energy of Canada Limited Report, Whiteshell Nuclear Research Establishment, 1984.

  29. M.P. Puls:Hydrogen-Induced Delayed Cracking: Part I. Strain Energy Effects on Hydrogen Solubility, AECL-6302, Atomic Energy of Canada Limited Report, Whiteshell Nuclear research Establishment, 1978.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J.B., JI, N., Gilbon, D. et al. Hydride embrittlement in ZIRCALOY-4 plate: Part II. interaction between the tensile stress and the hydride morphology. Metall Mater Trans A 25, 1199–1208 (1994). https://doi.org/10.1007/BF02652294

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652294

Keywords

Navigation