Skip to main content
Log in

The clustering of alumina inclusions

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Factors influencing the tendency of alumina particles in steel to agglomerate and form large clusters during deoxidation and solidification have been investigated by deoxidizing melts of Fe-10 pct Ni alloys with 0.1 pct aluminum under an inert atmosphere. Clusters of alumina inclusions are formed when the melt is stirred by either inductive or mechanical means. Nearly all of the inclusions are found in the clusters if the stirring time is long enough or at moderate stirring rates. Inclusions within the clusters increase in size with time while the size of inclusions in nonclustered regions remains essentially constant. The oxygen content of an ingot solidified soon after deoxidation corresponds well with that calculated from the oxygen content of the charged materials. After most inclusions have migrated to the clusters, the oxygen content in nonclustered regions is found to be as low as 2 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Sloman and E. L. Evans:J. Iron Steel Inst, 1950, vol. 165, pp. 81–90.

    CAS  Google Scholar 

  2. K. Torssell and M. Olette:Comptes Rendus, 1969, vol. 268, pp. 399–402.

    CAS  Google Scholar 

  3. K. Asano and T. Nakano:Tetsu-to-Hagane, 1971, vol. 57, pp. 1943–52.

    CAS  Google Scholar 

  4. N. Nemoto, T. Sasajima, T. Kawawa, H. Sato, and E. Sakamoto:Tetsu-to- Hagane, 1970, vol. 56, pp. S430–40.

    Google Scholar 

  5. S. Nemoto, T. Kawakazu, H. Sato, and E. Sakamoto:Tetsu-to-Hagane, 1971, vol. 57, p. S52.

    Google Scholar 

  6. H. Sandberg, T. Engh, J. Andersson and R. Olsson:Jerkont. Ann., 1971, vol. 155, pp. 201–16.

    CAS  Google Scholar 

  7. Y. Miyashita, K. Nishikawa, T. Kawawa, and M. Ohkubo:Second Japan- USSR Joint Symp. onPhys. Chem. of Met. Proc, pp. 101–12, Iron and Steel Inst. of Japan, Tokyo, 1969.

    Google Scholar 

  8. K. Nakanishi, E. Yokoyama, and H. Ooi:, pp. 50–66.

    Google Scholar 

  9. N. Lindskog and H. Sandberg:Scand. J. Metall, 1973, vol. 2, pp. 71–78.

    CAS  Google Scholar 

  10. C. Gatellier and M. Olette:Int. Symp. on Metallurgical Chemistry, Sheffield, England, 1971.

    Google Scholar 

  11. T. A. Engh and N. Lindskog:Scand. J. Metall, 1975, vol. 4, pp. 49–58.

    CAS  Google Scholar 

  12. R. B. Snow and J.A. Shea:J. Am. Ceram. Soc, 1949, vol. 32, pp. 187–94.

    Article  Google Scholar 

  13. G. C. Duderstadt, R. K. Iyengar, and J. M. Matesa:J. Metals, 1968, vol. 200, no. 4, pp. 89–94.

    Google Scholar 

  14. Kawawa, H. Nemoto, and H. Sato:Tetsu-to-Hagane, 1971,vol. 57,pp. S688–91.

    Google Scholar 

  15. J. W. Farrell and D. C. Hilty:Proc. Electric Furnace Conf., vol. 29, pp. 31- 46, AIME, New York, 1971.

    Google Scholar 

  16. S. N. Singh:Met. Trans., 1971, vol. 2, pp. 3248–49.

    CAS  Google Scholar 

  17. H. Knuppel and F. Oeters:Arch. Eisenhüettenw., 1962, vol. 33, p. 729.

    Google Scholar 

  18. L. Brewer: UCRL Rep. No. 653 (US-AEC declassified document), April, 1950.

  19. R. A. Rege, E. S. Szekeres, and W. D. Forgeng:Met. Trans., 1970, vol. 1, pp. 2652–53.

    Google Scholar 

  20. V. G. Levich:Physicochemical Hydrodynamics, Prentice-Hall Co., N.Y., 1962.

    Google Scholar 

  21. U. Lindborg and K. Torssell:Trans. TMS-AIME, 1968, vol. 242, pp. 94–102.

    CAS  Google Scholar 

  22. V. N. Eremenko:Liquid Phase Sintering, Consultants Bureau, New York, 1970.

    Google Scholar 

  23. R. L. Coble:J. Am. Ceram. Soc, 1958, vol. 41, pp. 55–62.

    Article  CAS  Google Scholar 

  24. W. D. Kingery:J. Am. Ceram. Soc., 1954, vol. 37, p. 42.

    Article  CAS  Google Scholar 

  25. C. Greskovich and K. W. Lay:J. Am. Ceram. Soc, 1972, vol. 55, pp. 142- 46.

    Article  CAS  Google Scholar 

  26. T. Z. Kattamis, J. C. Coughlin, and M. C. Flemings:Trans. TMS-AIME, 1967, vol. 239, pp. 1504–11.

    CAS  Google Scholar 

  27. Y. S. Touloukian:Thermophysical Properties of High Temperature Solid Material, vol. 4, MacMillan Co., New York, 1967.

    Google Scholar 

  28. F. A. Halden and W. D. Kingery:J. Phys. Chem., 1955, vol. 59, pp. 557–59.

    Article  CAS  Google Scholar 

  29. A. A. Chernov:Kristallografiya, 1956, vol. 1, pp. 583–87.

    CAS  Google Scholar 

  30. M. O. Klia:Kristallografiya, 1956, vol. 1, pp. 576–81.

    Google Scholar 

  31. Lord Rayleigh:London Math. Soc. Proc., 1879, vol. 10, pp. 4–13.

    Article  Google Scholar 

  32. H. E. Cline:Cline: Acta Met., 1971, vol. 19, pp. 481–90.

    Article  CAS  Google Scholar 

  33. S. N. Singh:Met. Trans., 1974, vol. 5, pp. 2165–78.

    Article  CAS  Google Scholar 

  34. D. C. Hilty and W. Crafts:Trans. AIME, 1950, vol. 188, pp. 414–24.

    CAS  Google Scholar 

  35. N. Gokcen and J. Chipman:Trans. AIME, 1953, vol. 197, pp. 173–78.

    Google Scholar 

  36. Geller and K. Dicke:Arch. Eisenhüettenw., 1943,vol. 16,p.431.

    CAS  Google Scholar 

  37. J. C. d’Entremont, D. L. Guernsey, and J. Chipman:Trans. TMS-AIME, 1963, vol. 227, pp. 14–17.

    CAS  Google Scholar 

  38. O. Repetylo, M. Olette, and P. Kozakevitch:J. Metals, 1967, vol. 19, no. 5, pp. 45–49.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, M.I.T..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, T.B., Elliott, J.F. & Flemings, M.C. The clustering of alumina inclusions. Metall Trans B 10, 171–184 (1979). https://doi.org/10.1007/BF02652461

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652461

Keywords

Navigation