Skip to main content
Log in

Oxidation of zinc sulfide in a fluidized bed

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Kinetics of oxidation of ZnS particles in a batch-type fluidized bed were studied at temperatures between 800 and 910°C. A two-phase model was employed for the fluidized bed, and the partial pressure of oxygen and the gas-film mass transfer coefficient on the particle surface were separately evaluated in gas bubbles and in the emulsion phase. The calculated fractional reaction coincided well with the experimental results. The difference in O2 partial pressure between gas bubbles and emulsion phase was found to be fairly large especially under the vigorous fluidizing condition. Furthermore, it was shown from the mathematical model that the reaction of ZnS particles in the gas bubbles is negligible because of the extremely low solid concentration and that the overall rate of reaction in the emulsion phase is virtually controlled by the rate of gas-film mass transfer at higher temperature. The resistance of interfacial reaction within the particle also becomes significant when the temperature is lowered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Natesan and W. O. Philbrook:Trans. TMS-AIME, 1969, vol. 245, pp. 2243–50.

    CAS  Google Scholar 

  2. K. J. Cannon and K. G. Denbigh:Chem. Eng. Sci., 1957, vol. 6, pp. 155–59.

    Article  CAS  Google Scholar 

  3. P. G. Thornhill and L. M. Pidgeon:J. Metals, 1957, vol. 9, pp. 989–95.

    CAS  Google Scholar 

  4. J. N. Ong, Jr., M. E. Wadsworth, and W. M. Fassel, Jr.:J. Metals, 1956, vol. 8, pp. 257–63.

    CAS  Google Scholar 

  5. K. J. Cannon and K. G. Denbigh:Chem. Eng. Sci., 1957, vol. 6, pp. 145–54.

    Article  CAS  Google Scholar 

  6. L. G. Denbigh and G. S. C. Beveridge:Trans. Inst. Chem. Eng., 1962, vol. 40, pp. 23–34.

    CAS  Google Scholar 

  7. E. Mendoza, R. E. Cunnungham, and J. J. Ronco:J. Cataly., 1970, vol. 17, pp. 277–86.

    Article  CAS  Google Scholar 

  8. A. N. Gokarn and L. K. Doraiswamy:Chem. Eng. Sci., 1971, vol. 26, pp. 1521–33.

    Article  CAS  Google Scholar 

  9. J. Gerlach and W. Stichel:Erzmetall., 1964, vol. 17, pp. 427–33.

    CAS  Google Scholar 

  10. S. Yagi and D. Kunii:Chem. Eng. Sci., 1961, vol. 16, pp. 380–91.

    Article  CAS  Google Scholar 

  11. K. Natesan and W. O. Philbrook:Met. Trans., 1970, vol. 1, pp. 1353–60.

    CAS  Google Scholar 

  12. R. Conrad and W. Wuth:Erzmetall., 1970, vol. 23, pp. 282–87.

    CAS  Google Scholar 

  13. D. Kunii and O. Levenspiel:Fluidization Engineering, p. 108, John Wiley and Sons, Inc., New York, 1969.

    Google Scholar 

  14. Ibid., p. 119.

    Google Scholar 

  15. H. Kobayashi, F. Arai, and T. Sunagawa:Kagaku Kogaku, 1967, vol. 31, pp. 239–43.

    Google Scholar 

  16. H. Kobayashi, F. Arai, and T. Chiba:Kagaku Kogaku, 1965, vol. 29, pp. 858–63.

    CAS  Google Scholar 

  17. D. Kunii and O. Levenspiel:Fluidization Engineering, p. 195, John Wiley and Sons, Inc., New York, 1969.

    Google Scholar 

  18. W. E. Ranz and W. R. Marshall, Jr.:Chem. Eng. Progr., 1952, vol. 48, pp. 141–46 and 173-80.

    CAS  Google Scholar 

  19. J. F. Richardson and J. Szekely:Trans. Inst. Chem. Eng., 1961, vol. 39, pp. 212–22.

    CAS  Google Scholar 

  20. F. Yoshida, D. Ramaswami, and O. A. Hougen:AIChE J., 1962, vol. 8, pp. 5–11.

    Article  CAS  Google Scholar 

  21. N. Wakao and J. M. Smith:Chem. Eng. Sci., 1962, vol. 17, p. 825.

    Article  CAS  Google Scholar 

  22. O. Hirschfelder, C. F. Curtis, and R. B. Bird:Molecular Theory of Gases and Liquid, p. 539, John Wiley and Sons, Inc., New York, 1954.

    Google Scholar 

  23. C. N. Satterfiled:Mass Transfer in Heterogeneous Catalysis, p. 41, M.I.T. Press, Cambridge, Mass., 1970.

    Google Scholar 

  24. J. F. Davidson and D. Harrison:Fluidized Particles, p. 19, Cambridge at the University Press, Cambridge, 1963.

    Google Scholar 

  25. Ibid.,:Fluidized Particles p. 100.Cambridge at the University Press, Cambridge, 1963.

    Google Scholar 

  26. D. Kunii and O. Levenspiel:Ind. Eng. Chem. Fundam., 1968, vol. 7, pp. 446–52.

    Article  CAS  Google Scholar 

  27. I. Hiraki, K. Yoshida, and D. Kunii:Kagaku Kogaku, 1965, vol. 29, pp. 846–50.

    CAS  Google Scholar 

  28. P. K. Baumgarten and R. L. Pigford:AIChE J., 1960, vol. 6, pp. 115–23.

    Article  CAS  Google Scholar 

  29. D. Kunii, I. Hiraki, and K. Yoshida:Proc. of the 3rd Chemical Eng. Sym- posium, p. 39, Nagoya, 1964.

  30. K. P. Lanneau:Trans. Inst. Chem. Eng., 1960, vol. 38, pp. 125–43.

    CAS  Google Scholar 

  31. R. Toei, R. Matsuno, H. Ishii, and H. Kojima:Proc. of the 3rd Chemical Eng. Symposium, p. 32, Nagoya, 1964.

  32. G. Yasui and L. N. Johanson:AIChE J., 1958, vol. 4, pp. 445–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Y. Fukunaka and T. Monta are both former Graduate Students, Kyoto University, Kyoto, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukunaka, Y., Monta, T., Asaki, Z. et al. Oxidation of zinc sulfide in a fluidized bed. Metall Trans B 7, 307–314 (1976). https://doi.org/10.1007/BF02652698

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652698

Keywords

Navigation