Skip to main content
Log in

Compositional dependence of cation impurity gettering in Hg1−xCdxTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cation impurity gettering in Hg1−xCdxTe is described in the context of process models which include the interactions of the impurities and the dominant native point defects. Experimental results are presented using secondary ion mass spectroscopy (SIMS) profiles of Au redistribution in Hg1−xCdxTe (x = 0.2,0.3,0.4) following Hg anneals and ion mills, which are processes known to inject excess Hg interstitials. In either process, the IB impurity distributes preferentially to high vacancy regions. The junction depth of the low to high impurity transition is determined by SIMS. For Hg-rich anneals of Au-doped high vacancy concentration material, the impurity junction behavior with respect to anneal time and temperature is compared to that expected for type converted electrical junctions in vacancy-only material. For milled Au-doped Hg0.7Cd0.3Te with a high vacancy concentration, the impurity junction depths are approximately proportional to the amount of material removed, as was the case with x = 0.2 material. Hg anneal type-conversion rates are found to have a strong compositional dependence which compares favorably with the strong self-diffusion coefficient dependence on x-value. In contrast, the mill conversion rate has a weak x-value dependence. Effects of trace vs dominant Au levels compared to the background vacancy concentration are quantified. True decoration of intrinsic defect processes requires Au <<[Cation Vacancies].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.R. Vydyanath,J. Electrochem. Soc. 128, 2609 (1981).

    Article  CAS  Google Scholar 

  2. H.F. Schaake,J. Electron. Mater. 14, 513 (1985).

    CAS  Google Scholar 

  3. N.A. Archer, H.D. Palfrey and A.F.W. Willoughby,J. Electron. Mater. 22, 967 (1993).

    CAS  Google Scholar 

  4. N.A. Archer, H.D. Palfrey and A.F.W. Willoughby,J. Cryst. Growth 117, 177 (1992).

    Article  CAS  Google Scholar 

  5. N. Archer and H. Palfrey,J. Electron. Mater. 20, 419 (1991).

    CAS  Google Scholar 

  6. Mei-Fan Sung Tang, Ph.D. Thesis, Stanford University (1987).

  7. D.A. Stevenson and M-F.S. Tang,J. Vac. Sci. Technol. B 9, 1615 (1991).

    Article  CAS  Google Scholar 

  8. M. Brown and A.F.W. Willoughby,J. Cryst. Growth 59, 27 (1982).

    Article  CAS  Google Scholar 

  9. CL. Jones, M.J.T. Quelch, P. Capper and J.J. Gosney,J. Appl. Phys. 53, (1982).

  10. John-Sea Chen, Ph.D. Thesis, University of Southern California (1985).

  11. D.T. Dutton, E. O’Keefe, P. Capper, C.L. Jones, S. Mugford and C. Ard,Semicond. Sci. Technol. 8, S266 (1993).

    Article  CAS  Google Scholar 

  12. J.L. Meléndez and C.R. Helms,J. Electron. Mater. 24, 565 (1995).

    Google Scholar 

  13. J.L. Meléndez and C.R. Helms,J. Electron. Mater. 24, 573 (1995).

    Google Scholar 

  14. J.L. Meléndez,, Ph.D. Thesis, Stanford University (1993).

  15. S. Holander, V. Sabnis, J. Hasan, J. Meléndez and C.R. Helms,SUMerCad Process Simulator Software, Stanford University (1994).

  16. J.L. Meléndez, C.R. Helms, J. Tregilgas and J. Elkind,SPJE 228, 106 (1994).

    Google Scholar 

  17. H.R. Vydyanath and C.H. Hiner,J. Appl. Phys. 65, 3080 (1989).

    Article  CAS  Google Scholar 

  18. R.F. Brebrick and J.P. Schwartz,J. Electron. Mater. 9, 771 (1980).

    Article  Google Scholar 

  19. G.L. Hansen and J.L. Schmit,J. Appl. Phys. 54,1639 (1983).

    Article  CAS  Google Scholar 

  20. L.O. Bubulac, W.E. Tennant, R.A. Riedel, J. Bajaj and D.D. Edwall,J. Vac. Sci. Technol. A 1, 1646 (1983).

    Article  CAS  Google Scholar 

  21. H.F. Schaake, J.H. Tregilgas, J.D. Beck, M.A. Kinch and B.E.Gnade,J. Vac. Sci. Technol. A 3, 143 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meléndez, J.L., Tregilgas, J., Dodge, J. et al. Compositional dependence of cation impurity gettering in Hg1−xCdxTe. J. Electron. Mater. 24, 1219–1224 (1995). https://doi.org/10.1007/BF02653077

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02653077

Key words

Navigation