Skip to main content
Log in

Cryogenic toughness of commercial aluminum-lithium alloys: Role of delamination toughening

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Mechanisms influencing the plane-strain fracture toughness behavior of commercial aluminum-lithium alloys at cryogenic temperatures are investigated as a function of microstructure and plate orientation. It is confirmed that certain alloys show a markedincrease in tensile ductility and toughness withdecrease in temperature, although such behavior is not found in the short-transverse orientations, or for all alloys and aging conditions. Specifically at lower temperatures, the majority of Al-Li alloys, namely 2090-T8E41, 8091-T8X, 8090-T8X, and 2091-T351, show a significantincrease in fracture toughness in the in-plane orientations (L-T, T-L), without any apparent change in fracture mode. Such behavior is attributed primarily to loss of through-thickness constraint resulting from enhanced short-transverse delamination (termed crack-divider delamination toughening), consistent with observed reductions in plane-strain ductility and short-transverse (S-L, S-T) toughness. Conversely, in underaged microstructures of 8091, 8090, and peak-aged 2091, a decrease in toughness with decreasing temperature is found for both L-T and S-L orientations, behavior, which is associated conversely with a fracture-mode change from ductile void coalescence to brittle transgranular shear and integranular delamination at lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Glazer, S.L. Verzasconi, E.N. Dalder, W. Yu, R.A. Emigh, R.O. Ritchie, and J.W. Morris:Adv. Cryo. Eng., 1986, vol. 32, pp. 397–404.

    CAS  Google Scholar 

  2. D. Webster:Metals Progress, 1984, vol. 125, pp. 31–37.

    Google Scholar 

  3. D. Webster: inAluminum-Lithium Alloys, III, C. Baker, P.J. Gregson, S.J. Harris, and C.J. Peel, eds., Institute of Metals, London, U.K., 1986, pp. 602–09.

    Google Scholar 

  4. R.C. Dorward:Scripta Metall, 1986, vol. 20, pp. 1379–83.

    Article  CAS  Google Scholar 

  5. D. Dew-Hughes, E. Creed, and W.S. Miller:Mater. Sci. Tech., 1988, vol. 4, pp. 106–12.

    CAS  Google Scholar 

  6. F.G. Nelson, and J.G. Kaufman: inFracture Toughness Testing at Cryogenic Temperatures, ASTM STP 496, American Society for Testing and Materials, Philadelphia, PA, 1971, pp. 27–39.

    Google Scholar 

  7. J. Glazer, S.L. Verzasconi, R.R. Sawtell, and J.W. Morris:Metall. Trans. A, 1987, vol. 18A, pp. 1695–701.

    CAS  Google Scholar 

  8. F.A. Johnson, and J.C. Radon:Int. J. Fracture, 1972, vol. 8, pp. 21–36.

    Article  Google Scholar 

  9. W. Webster:Metall. Trans. A, 1987, vol. 18A, pp. 2181–93.

    CAS  Google Scholar 

  10. K.T. Venkateswara Rao, H.F. Hayashigatani, Y. Yu, and R.O. Ritchie:Scripta Metall., 1988, vol. 22, pp. 93–98.

    Article  CAS  Google Scholar 

  11. C.M. Carman, D.F. Armiento, and H. Markus: inICF-1, Proc. of 2st Intl. Conf. on Fracture, T. Yokobori, T. Kawasaki, and J.L. Swedlow, eds., Sendai, Japan, 1965, vol. 1, pp. 995–1038.

  12. K.T. Venkateswara Rao and R.O. Ritchie:Mater. Sci. Tech., 1989, vol. 5, in press.

  13. H.M. Flower and P.J. Gregson:Mater. Sci. Tech., 1987, vol. 3, pp. 81–90.

    CAS  Google Scholar 

  14. P. Meyer, and B. Dubost: inAluminum-Lithium Alloys III C. Baker, P.J. Gregson, S.J. Harris, and C.J. Peel, eds., Institute of Metals, London, U.K., 1986, pp. 37–46.

    Google Scholar 

  15. M.H. Tosten, A.K. Vasudévan, and P.R. Howell:Metall. Trans. A, 1988, vol. 19A, pp. 51–66.

    CAS  Google Scholar 

  16. K.V. Jata, and E.A. Starke:Metall. Trans. A, 1986, vol. 17A, pp. 1011–26.

    CAS  Google Scholar 

  17. A.K. Vasudévan, W.G. Fricke, R.C. Malcolm, R.J. Bucci, M.A. Przystupa, and F. Barlat:Metall. Trans. A, 1988, vol. 19A, pp. 731–32.

    Google Scholar 

  18. J. Hirsch, O. Engler, K. Lücke, M. Peters, and K. Welpmann:J. Physique Coll., 1987, vol. C3, pp. 605–11.

    Google Scholar 

  19. G.R. Yoder, P.S. Pao, M.A. Imam, and L.A. Cooley:Scripta Metall, 1988, vol. 22, pp. 1241–44.

    Article  CAS  Google Scholar 

  20. R.O. Ritchie, W.L. Server, and R.A. Wullaert:Metall. Trans. A, 1978, vol. 10A, pp. 1557–70.

    Google Scholar 

  21. P.W. Bridgman,Studies in Large Flow and Fracture, McGraw-Hill, New York, 1952.

    Google Scholar 

  22. R.J. Bucci:Eng. Fract. Mech., 1979, vol. 12, pp. 407–41.

    Article  CAS  Google Scholar 

  23. K.T. Venkateswara Rao, and R.O. Ritchie:Mater. Sci. Eng., 1988, vol. 100, pp. 23–30.

    Article  Google Scholar 

  24. D.E. Pettit, and J.M. Van Orden: inFracture Mechanics, ASTM STP 677, American Society for Testing Materials, Philadelphia, PA, 1979, pp. 106–24.

    Google Scholar 

  25. W.S. Miller, M.P. Thomas, D.J. Lloyd, and D. Creber: inAluminum-Lithium Alloys III C. Baker, P.J. Gregson, S.J. Harris, and C.J. Peel, eds., Institute of Metals, London, U.K., 1986, pp. 584–93.

    Google Scholar 

  26. R.O. Ritchie, L.C.E. Geniets, and J.F. Knott: inMicrostructure and Design of Alloys (Proc. ICMSA-3), Institute of Metals/Iron and Steel Institute, London, U.K., 1973, vol. 1, pp. 124–28.

    Google Scholar 

  27. H.L. Leichter:J. Spacecraft, 1966, vol. 3, pp. 1113–20.

    Article  CAS  Google Scholar 

  28. J.D. Embury, N.J. Petch, A.E. Wraith, and E.S. Wright,Trans. TMS-AIME, 1967, vol. 239, pp. 114–18.

    CAS  Google Scholar 

  29. J.G. Kaufman:J. Basic Eng., Trans. ASME, Series D, 1967, vol. 89, pp. 503–07.

    CAS  Google Scholar 

  30. N.G. Ohlson:Eng. Fract. Mech., 1974, vol. 6, pp. 459–72.

    Article  CAS  Google Scholar 

  31. S.D. Antolovich, K. Kasi, and G.R. Chanani: inFracture Toughness, ASTM STP 514, American Society for Testing Materials, Philadelphia, PA, 1972, pp. 135–50.

    Google Scholar 

  32. S. Floreen, H.W. Hayden, and J.Q. Steigleman:Trans. ASM, 1969, vol. 62, pp. 812–15.

    CAS  Google Scholar 

  33. R.A. Schmidt and T.J. Lutz: inFracture Mechanics Applied to Brittle Materials ASTM STP 678, American Society for Testing Materials, Philadelphia, PA, 1979, pp. 166–82.

    Google Scholar 

  34. M. Sakai, R.C. Bradt, and D.B. Fischbach:J. Mater. Sci., 1986, vol. 21, pp. 1491–501.

    Article  CAS  Google Scholar 

  35. G.E. Pellissier:Eng. Fract. Mech., 1968, vol. 1, pp. 55–75.

    Article  CAS  Google Scholar 

  36. R.J. Stokes, and C.H. Li:Trans. TMS-AIME, 1964, vol. 230, pp. 1104–10.

    Google Scholar 

  37. K. Markström:Eng. Fract. Mech., 1972, vol. 4, pp. 593–603.

    Article  Google Scholar 

  38. J. Cook, and J.E. Gordon:Proc. Roy. Soc. A, 1964, vol. A282, pp. 509–20.

    Google Scholar 

  39. B. Cotterell, and J.R. Rice:Int. J. Fract, 1980, vol. 16, pp. 155–69.

    Article  Google Scholar 

  40. S. Suresh, and C.F. Shih:Int. J. Fract., 1986, vol. 30, pp. 237–59.

    Article  Google Scholar 

  41. H. Tada, P.C. Paris, and G.R. Irwin: inThe Stress Analysis of Cracks Handbook, 2nd ed., Paris Prod. Inc. & Dei Research Corp., St. Louis, MO, 1985.

    Google Scholar 

  42. J.I. Bluhm:ASTM Proc., 1961, vol. 61, pp. 1324–31.

    Google Scholar 

  43. D.P. Isherwood, and J.G. Williams:Eng. Fract. Mech., 1970, vol. 2, pp. 19–35.

    Article  Google Scholar 

  44. G.C. Shih, and R.J. Hartranft:Int. J. Fract., 1973, vol. 9, pp. 75–82.

    Google Scholar 

  45. D. Broek:Elementary Engineering Fracture Mechanics, 3rd ed., Martinus Nijhoff, The Hague, The Netherlands, 1984.

    Google Scholar 

  46. R.O. Ritchie, and A.W. Thompson:Metall. Trans. A, 1985, vol. 16A, pp. 233–48.

    CAS  Google Scholar 

  47. W.J. Drugan, J.R. Rice, and T.-L. Sham:J. Mech. Phys. Solids, 1982, vol. 30, pp. 447–73.

    Article  Google Scholar 

  48. S. Suresh, A.K. Vasudévan, M. Tosten, and P.R. Howell:Acta Metall., 1987, vol. 35, pp. 25–46.

    Article  CAS  Google Scholar 

  49. A.K. Vasudévan, and R.D. Doherty:Acta Metall. 1987, vol. 35, pp. 1193–219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

W{upeikang} Y{upu}, formerly with the Department of Materials Science and Mineral Engineering, University of California, Berkeley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkateswara Rao, K.T., Yu, W. & Ritchie, R.O. Cryogenic toughness of commercial aluminum-lithium alloys: Role of delamination toughening. Metall Trans A 20, 485–497 (1989). https://doi.org/10.1007/BF02653929

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02653929

Keywords

Navigation