Skip to main content
Log in

An investigation of pore cracking in titanium welds

  • Issue Focus: Aerospace Materials
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Two welded Ti-6A1-4V pressure vessels leaked prematurely in service. The leaks were caused by cracks emanating from weld porosity. The cracks originated during fabrication, with subsequent growth in service leading to the formation of the leak paths. Pore cracking is thought to be caused by a mechanism that involves both sustained-load and cyclic contributions, with the former being the more prominent. It is shown that the tendency for cracking is influenced by pore position and that pore size is not a deciding factor in that regard. The factors that govern pore cracking are discussed, and the possible role of interstitial embrittlement is assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Howden,Weld. J., Vol 50 (No, 2), 1971, p 112.

    Google Scholar 

  2. D.G. Howden,Weld. J.,Res. Suppl., Vol 61 (No. 4), 1982,p 103-S

    Google Scholar 

  3. I.D. Harris, “A Review of Porosity Formation and Recommendations on the Avoidance of Porosity in TIG Welding,” Report 387, The Welding Institute, 1987

  4. J.W. Bradley and R.B. McCauley,Weld. J., Res. Suppl., Vol 43 (No. 9), 1964,p 408-S

    Google Scholar 

  5. A.I. Gorshkov,Weld. Prod., Vol 15 (No. 7), 1968, p 41; trans, from Russian

    Google Scholar 

  6. R.M. Evans, “Porosity in Titanium Welds,” DMIC Memorandum 194, Battelle Memorial Institute, 8 June 1964

  7. D.R. Mitchell,Weld. J., Res. Suppl., Vol 44 (No. 4), 1965, p 157-S

    Google Scholar 

  8. M.M. D’Andrea Jr.,Weld. J., Res. Suppl., Vol 45 (No. 3), 1966, p 178-S

    Google Scholar 

  9. F.V. Lawrence, Jr., W.H. Munse, and J.D. Burk, “Effects of Porosity on the Fatigue Properties of 5083 Aluminum Alloy Weldments,” Bulletin No. 206, Welding Research Council, 1975

  10. “Feasibility Study for Producing Navaho Components from Titanium,” Report AL-2214-3 (Air Force Contract 33-600-30902), North American Aviation, 15 Dec 1955

  11. R.P. Olsen and J. Gates,Weld.J.,37(No. 5), May 1958,p478

    Google Scholar 

  12. C. Walker, “Metallurgical Investigation of Four Experimental Ti-6A1-4V Pressure Vessels,” Test No. T5-1380, Boeing Airplane Co., 7 Aug 1958

  13. F. Godfrey and R. Makowski, “Research and Development of Titanium Rocket Motor Case, Vol III—Development of Welding Practice,” Technical Report WAL 766.2/1-14, Pratt and Whitney Aircraft, 31 Oct 1963

  14. J. Kennedy and R. Schulte,J. Mater. Sci., Vol 21, 1986, p 4424

    Article  CAS  Google Scholar 

  15. T.E. Collins and T. Khaled, “Investigation of Weld Pore Cracking in MPS Helium Pressurization Tank S/N 33,” Report SSD92D0248, Rockwell International, Feb 1992

  16. J.T. Kenny, “RCS Tank Girth Weld Flaw Investigation Report TA-1,” Report No. C87376, Martin Marietta Corp., Denver, CO, Aug, 1979.

  17. T. Khaled and M.R. Leifeste, “Failure Analysis of He Tank (S/N 35),” Laboratory Test Report LTR 4088-2454, Rockwell International, Feb 1993

  18. S.M. Gurevich, O.K. Nazarenko, V.N. Zamkov, V.E. Lokshin, and A.D. Sheveler,Titanium 80, Science and Technology, H. Kimura and O. Izumi, Ed., TMS-AIME, 1980, p 2347

  19. E. Tsuchida and I. Nakahara,Bull. Jpn. Soc. Mech. Eng., Vol 13, 1970, p 499

    Article  Google Scholar 

  20. “Low Cycle Fatigue Design Data on Materials in Multi-Axial Stress Field,” Report TDR-63-4094, Air Force Materials Laboratory, Nov 1963

  21. “Biaxial Strength Characteristics of Selected Alloys in a Cryogenic Environment,” Report 2-53420/6R-2279, LTV Aerospace Corp., 6 May 1966

  22. E. Litwinski, R. Mines, D. Wittman, and T. Khaled, “Fractography and Fracture of Ti-6A1-4V; Interim Progress Report,” Laboratory Test Report LTR 5986-2450, Rockwell International, 1 Dec 1992

  23. E.H. Rennhak and W.B. Burger,Titanium 80, Science and Technology, H. Kimura and O. Izumi, Ed., TMS-AIME, 1980, p 419

  24. D.N. Williams,Metall. Trans., Vol 5 (No. 11), 1974, p 2351

    Article  CAS  Google Scholar 

  25. G.R. Yoder, C.A. Griffis, and T.W. Crooker,J. Eng. Mater. Technol. (Trans. ASME), 96(No. 10), Oct 1974, p 268

    Article  CAS  Google Scholar 

  26. D.A. Meyn,Metall. Trans. A, Vol 5 (No. 11), 1974, p 2405

    Article  CAS  Google Scholar 

  27. D. Eylon, T.L. Bartel, and M.R. Rosenblum,Metall. Trans. A, Vol 11 (No. 8), 1980, p 1361

    Article  Google Scholar 

  28. D. Eylon and M.R. Rosenblum,Metall. Trans. A, Vol 13 (No. 2), 1982, p 322

    Article  Google Scholar 

  29. J.E. Hack and G.R. Leverant,Metall. Trans. A, Vol 13 (No. 10), 1982 ,p 1729

    Article  CAS  Google Scholar 

  30. W.J. Evans and C.R. Gostelow,Metall. Trans. A, Vol 10 (No. 12), 1979, p 1837

    Article  Google Scholar 

  31. J.C. Chestnut and N.E. Paton,Titanium 80, Science and Technology, H. Kimura and O. Izumi, Ed., TMS-AIME, 1980, p 1855

  32. R.H. Leggatt, Residual Stresses at Circumferential Welds in Pipes,Weld. Inst. Res. Bull., June 1982, p 181

  33. R.M. Ehret, “Fracture Control Methods for Space Vehicles, Vol II—Assessment of Fracture Mechanics Technology for Space Shuttle Applications,” Report CR-134597, NASA, 1974

  34. L.W. Berger, D.N. Williams, and R.I. Jaffee,Trans. ASM, Vol 49, 1957, p 300

    Google Scholar 

  35. K. Borggreen and I. Wilson,Weld. J.,Res. Suppl., Vol 61 (No. 1), 1982, pl-S

    Google Scholar 

  36. G. Thomas, V. Ramachandra, M.J. Nair, K.V. Ngarajan, and R. Vasudevan,Weld. J., Res. Suppl., Vol 71 (No. 1), 1992, p 15-S

    Google Scholar 

  37. R.R. Boyer and W.F. Spurr,Metall. Trans. A, Vol 9 (No. 1), 1978, p 23

    Article  Google Scholar 

  38. N.R. Moody and W.W. Gerberich,Metall. Trans. A, Vol 11 (No. 6), 1980, p 973

    Article  Google Scholar 

  39. H. Margolin,Metall. Trans. A, Vol 7 (No. 8), 1976, p 1233

    Article  Google Scholar 

  40. W.J. Pardee and N.E. Paton,Metall. Trans. A, Vol 11 (No. 8), 1980, p 1391

    Article  Google Scholar 

  41. D.A. Meyn, “Fractography—Microscopic Cracking Processes,” STP 600, ASTM, 1976, p 75

  42. Y.A. Benin, J.L Gacougnole, J. Parisot, J. de Fouquet, and D. Beshers,Titanium 80, Science and Technology, H. Kimura and O. Izumi, Ed., TMS-AIME, 1980, p 529

  43. A. Tobin, “Effect of Hydrogen, Oxygen and Microstructure on Sustained Load Subcritical Crack Growth,” Research Memorandum RM-720J, Grumman Aerospace Corp., 1981

  44. A.W. Thompson, J.D. Frandsen, and J.C. Williams,Metal Science, Vol 9, The Metals Society, 1975, p 46

  45. G.T. Gray III, G. Luetjering, and J.C. Williams,Metall. Trans. A, Vol 21 (No. 1), 1990, p 95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaled, T. An investigation of pore cracking in titanium welds. JMEP 3, 21–36 (1994). https://doi.org/10.1007/BF02654496

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654496

Keywords

Navigation