Skip to main content
Log in

Morphological changes of carbides during creep and their effects on the creep properties of inconel 617 at 1000 °C

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Creep tests have been correlated with microstructural changes which occurred during creep of Inconel 617 at 1000 °C, 24.5 MPa. The following results were obtained: 1) Fine intragranular carbides which are precipitated during creep are effective in lowering the creep rate during the early stages of the creep regime (within 300 h). 2) Grain boundary carbides migrate from grain boundaries that are under compressive stress to grain boundaries that are under tensile stress. This is explained in terms of 1 the dissolution of relatively unstable carbides on the compressive boundaries, 2 the diffusion of the solute atoms to the tensile boundaries and 3 the reprecipitation of the carbides at the tensile boundaries. The rate of grain boundary carbide migration depends on grain size. 3) M23C6 type carbides, having high chromium content, and M6C type carbides, having high molybdenum content, co-exist on the grain boundaries. M23C6 type carbides, however, are quantitatively predominant. Furthermore, M6C occurs less frequently on the tensile boundaries than on the stress free grain boundaries. This is attributed to the difference of the diffusion coefficients of chromium and molybdenum. 4) The grain boundaries on which the carbides have dissolved start to migrate in the steady state creep region. The creep rate gradually increases with the occurrence of grain boundary migration. 5) The steady state creep rate depends not so much on the morphological changes of carbides as on the grain size of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Project News 1976, published by the Ministry of International Trade and Industry of Japan, Tokyo, Japan.

  2. R. L. Ammon and R. W. Buckman:Trans. ANS., 1977, vol. 26, p. 202.

    Google Scholar 

  3. R. K. Bhargava, J. Moteff, and R. W. Swindeman:Met. Trans. A, 1976, vol. 7A, p. 879.

    Article  CAS  Google Scholar 

  4. W. L. Mankins, J. C. Hosier, and T. H. Bassford:Met. Trans., 1974, vol. 5, p. 2579.

    Article  CAS  Google Scholar 

  5. T. Takahashi, J. Fujiwara, T. Matsushima, M. Kiyokawa, I. Morimoto, and T. Watanabe:Trans. Iron Steel Inst. Jpn., 1978, vol. 18, p. 221.

    CAS  Google Scholar 

  6. Y. Hosoi and S. Abe:Met. Trans. A, 1975, vol. 6A, p. 1171.

    Article  CAS  Google Scholar 

  7. Y. Saiga, A. Ohtomo, and K. Mino: Report of the 123rd Committee on Heat-Resisting Metals and Alloys, Japan Society for the Promotion of Science, 1974, vol. 15, p. 155.

  8. K. Mino and A. Ohtomo:Trans. Iron Steel Inst. Jpn., 1978, vol. 18, p-731.

    Google Scholar 

  9. T. Takahashi: Private communication, National Research Institute for Metals, Tokyo, Japan.

  10. F. Garofalo:Fundamentals of Creep and Creep-rupture in Metals, p. 146, The Macmillan Company, New York, 1965.

    Google Scholar 

  11. F. Garofalo, R. W. Whitmore, W. F. Domis, and F.von Gennigen:Trans. TMS—AIME, 1961, vol. 221, p. 310.

    CAS  Google Scholar 

  12. R. Raj. and M. F. Ashby:Met. Trans., 1971, vol. 2, p. 1113.

    Google Scholar 

  13. Y. G. Nakagawa and G. C. Weatherly:Met. Trans., 1972, vol. 3, p. 3223.

    CAS  Google Scholar 

  14. F. G. Wilson:J. Iron Steel Inst., 1971, vol. 209, p. 126.

    CAS  Google Scholar 

  15. M. Yamazaki, T. Arai, and Y. Koizumi: Report of the 123rd Committee on Heat-Resisting Metals and Alloys, Japan Society for the Promotion of Science, 1973, vol. 14, p. 69.

  16. C. D. Himmelblau and N. J. Grant:Conference on in situ composites II, p. 505, Xerox Individualized Publishing, Lexington, MA, 1976.

    Google Scholar 

  17. V. Biss, D. L. Sponseller, and M. Semchyshen:J. Mater., 1972, vol. 7, p. 88.

    CAS  Google Scholar 

  18. C. Herring:J. Appl. Phys., 1950, vol. 21, p. 437.

    Article  Google Scholar 

  19. T. B. Gibbons:Met. Sci. J., 1972, vol. 6, p. 13.

    Article  CAS  Google Scholar 

  20. J. K. Tien and R. P. Gamble:Met. Trans., 1971, vol. 2, p. 1663.

    CAS  Google Scholar 

  21. A. Davin, V. Leroy, D. Coutsourads, and L. Habraken:Memories Scientifiques Rev. Metallurg, 1963, vol. 60, p. 275.

    CAS  Google Scholar 

  22. B. Barton:Diffusional Creep of Polycrystalline Materials, p. 2, Trans Tech Publications, Bay Village, OH, 1977.

    Google Scholar 

  23. S. Kihara, K. Asakawa, A. Ohtomo, and Y. Saiga: Ishikawajima-Harima Heavy Industries Engineering Review, 1975, vol. 8, p. 17.

    CAS  Google Scholar 

  24. T. Shinoda, M. B. Zaghloul, Y. Kondo, and R. Tanaka:Trans. Iron Steel Inst. Jpn., 1978, vol. 18, p. 139.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kihara, S., Newkirk, J.B., Ohtomo, A. et al. Morphological changes of carbides during creep and their effects on the creep properties of inconel 617 at 1000 °C. Metall Trans A 11, 1019–1031 (1980). https://doi.org/10.1007/BF02654716

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654716

Keywords

Navigation