Skip to main content
Log in

Critical fluid-flow phenomenon in a gas-stirred ladle

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Measurement of the velocities of bubbles and liquid with a two-element electroresistivity probe and laser-Doppler velocimeter, respectively, during bottom injection of air into a water bath, has confirmed the existence of a critical gas-injection rate. Above the critical flow rate, the change of axial bubble velocity in the air jet, and of liquid velocity with increasing volume flow rate, diminishes markedly. The existence of the critical flow rate is explicable from high-speed motion pictures of the vertical gas jets, which reveal four zones of gas dispersion axially distributed above the orifice: primary bubble at the orifice, free bubble, plume consisting of disintegrated bubbles, and spout at the bath surface. With increasing gas-injection rate, the free-bubble zone expands such that the point of bubble disintegration rises closer to the bath surface. Above the critical flow rate, the free bubbles rise with minimal breakup and erupt from the bath surface with maximum energy discharge. The combined Kelvin-Helmholtz, Rayleigh-Taylor instability theory has been applied to analyze the bubble breakup in the bath and the critical gas-injection rate in a gas-stirred ladle. The criterion for the critical diameter of bubble breakup has been found to depend primarily on the surface tension and density of the liquid. In the analysis, the propagation time of a disturbance on a bubble surface at the “most unstable” wave number has been compared with the bubble rising time in the bath in order to determine the critical gas-flow rate. The predicted critical values are in close agreement with the measured results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Castillejos and J.K. Brimacombe:Metall. Trans. B, 1987, vol. 18B, pp. 649–58.

    Article  CAS  Google Scholar 

  2. A.H. Castillejos and J.K. Brimacombe:Metall. Trans. B, 1987, vol. 18B, pp. 659–71.

    Article  CAS  Google Scholar 

  3. A.H. Castillejos and J.K. Brimacombe:Metall. Trans. B, 1989, vol. 20B, pp. 595–601.

    Article  Google Scholar 

  4. P.E. Anagbo and J.K. Brimacombe:Metall. Trans. B, 1990, vol. 21B, pp. 637–48.

    Article  CAS  Google Scholar 

  5. V. Sahajwalla, A.H. Castillejos, and J.K. Brimacombe:Metall. Trans. B, 1990, vol. 21B, pp. 71–80.

    Article  CAS  Google Scholar 

  6. V. Sahajwalla, M.E. Salcudean, and J.K. Brimacombe:Metall. Mater. Trans. B, in press.

  7. V. Sahajwalla, J.K. Brimacombe, and M.E. Salcudean: inSCANINJECT V, 5th Int. Symp. on Ladle Metallurgy, MEFOS, Lulea, Sweden, 1989, Part II, pp. 103–44.

    Google Scholar 

  8. O. Haida and J.K. Brimacombe:Trans. Iron Steel Inst. Jpn., 1985, vol. 25, pp. 14–20.

    CAS  Google Scholar 

  9. M. Hirasawa, K. Mori, M. Sano, A. Hatanaka, Y. Shimatani, and Y. Okazaki:Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 277–82.

    CAS  Google Scholar 

  10. S. Turkan and K.W. Lange:Mathematical Modelling of Material Processing Operations, 5th Extractive and Process Metallurgy Fall Meeting, Palm Springs, CA, TMS, Warrendale, PA, 1987, pp. 1185–95.

    Google Scholar 

  11. S. Asai, T. Okamoto, J.-C. He, and I. Muchi:Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 43–50.

    Google Scholar 

  12. D. Mazumdar and R.I.L. Guthrie:Metall. Trans. B, 1986, vol. 17B, pp. 725–33.

    Article  CAS  Google Scholar 

  13. G.G. Krishna Murthy, S.P. Mehrotra, and A. Ghosh:Metall. Trans. B, 1988, vol. 19B, pp. 839–50.

    Article  Google Scholar 

  14. F. Oeters, W. Pluschkell, E. Steinmetz, and H. Wilhelmi:Steel Res., 1988, vol. 59, pp. 192–201. x

    CAS  Google Scholar 

  15. T. Kai, K. Okahira, M. Higuchi, and M. Hirai:Tetsu-to-Hagané, 1982, vol. 68, pp. 1964–70.

    CAS  Google Scholar 

  16. Y. Ozawa and K. Mori:Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 291–97. j

    CAS  Google Scholar 

  17. A.E. Wraith and M.E. Chalkley:Advances in Extractive Metallurgy, M.J. Jones, ed., IMM, London, 1977, pp. 27–33.

    Google Scholar 

  18. N.J. Themelis and P. Goyal:Can. Metall. Q., vol. 22, 1983, p. 313.

    CAS  Google Scholar 

  19. Y.-F. Zhao and G.A. Irons:Metall. Trans. B, 1990, vol. 21B, pp. 997–1003.

    Article  CAS  Google Scholar 

  20. S.C. Koria:Ironmaking and Steelma king, 1990, vol. 17, pp. 31–37.

    CAS  Google Scholar 

  21. P.E. Anagbo, J.K. Brimacombe, and A.H. Castillejos:Can. Metall. Q., 1989, vol. 28, pp. 323–30.

    CAS  Google Scholar 

  22. R. Clift, J.R. Grace, and M.E. Weber:Bubbles, Drops and Particles, Academic Press, New York, NY, 1978, p. 171.

    Google Scholar 

  23. C.H. Lee, L.E. Erickson, and L.A. Glasgow:Chem. Eng. Commun., 1987, vol. 59, pp. 65–84.

    Article  CAS  Google Scholar 

  24. H.K. Henriksen and K. Ostergaard:Chem. Eng. Sei 1974 vol. 29, pp. 626–29.

    Article  CAS  Google Scholar 

  25. JO. Hinze:AIChE. /., 1955, vol. 1, p. 289.

    Article  CAS  Google Scholar 

  26. J.R. Grace, T. Wairegi, and J. Brophy:Can. J. Chem Eng., 1978, vol. 56, pp. 3–8.

    Article  CAS  Google Scholar 

  27. S. Chandrasekhar:Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Oxford, United Kingdom, 1961.

    Google Scholar 

  28. J. Kitscha and G. Kocamustafaogullari:Int. J. Multiphase Flow, 1989, vol. 15, pp. 573–88.

    Article  CAS  Google Scholar 

  29. F. Durst and M. Zare: inProc. LDA-Symp., Copenhagen, 1975.

  30. T. Wasowski and E. Blass:Int. Chem. Eng., 1988, vol. 28, pp. 593–607.

    Google Scholar 

  31. E.O. Hoefele and J.K. Brimacombe:Metall. Trans. B, 1982, vol. 13B, pp. 165–73.

    Google Scholar 

  32. M.J. McNallan and T.B. King:Metall. Trans. B, 1982, vol. 13B, pp. 165–73.

    Article  CAS  Google Scholar 

  33. I. Leibson, E.G. Holcomb, A.G. Cacoso, and J.J. Jacmic:AIChE J., 1956, vol. 2 (3), pp. 296–306.

    Article  CAS  Google Scholar 

  34. K. Mori, Y. Ozawa, and M. Sano:Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 377–84.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

M. ZHOU formerly was Post Doctoral Fellow with the Centre for Metallurgical Process Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1Z4

J.K. BRIMACOMBE holds the Alcan Chair in Materials Process Engineering

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Brimacombe, J.K. Critical fluid-flow phenomenon in a gas-stirred ladle. Metall Mater Trans B 25, 681–693 (1994). https://doi.org/10.1007/BF02655176

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655176

Keywords

Navigation