Skip to main content
Log in

Melt/freeze heat transfer measurements in cryolite-based electrolytes

  • Process Control
  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The need to maintain a solid electrolyte ledge on the sidewalls of aluminum smelting cells has recently provoked interest in the heat transfer rate from the molten to the frozen phase at this interface. In this work an electronic voltage to frequency conversion technique was developed to record thermocouple signals inside a vertical, air cooled graphite cylinder rotating in molten cryolite. Precise measurement of the solid electrolyte which freezes around the internally-cooled cylinder allowed determination of the interfacial heat transfer coefficient under both free and forced convection conditions. Correlation of the local Nusselt numbers for heat transfer to the stationary cylinder yields an expression similar to that obtained for natural convection in a rectangular enclosure. However, rotation of the cylinder at peripheral velocities of 0.09 to 0.12 m s−1 caused forced convection to dominate in the cavity and increased the heat transfer coefficients by 34 to 45 pct, respectively. The data provide a basis on which to calculate the convective heat flow to the sidewall ledge for a range of hydrodynamic conditions in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sorlie and H. A. Oye:Metall., 1982, vol. 36, No. 6, pp. 635–42.

    Google Scholar 

  2. M. P. Taylor, B. J. Welch, and J. T. Keniry:Light Metals, AIME, New York, NY, 1983, pp. 437–47.

    Google Scholar 

  3. M. P. Taylor, B. J. Welch, and M. J. O'Sullivan:Chemeca 83—Proc. 11th Aust. Chem. Eng. Conference, Brisbane, 1983, pp. 493–500.

  4. A. Solheim and J. Thonstad:Light Metals, AIME, New York, NY, 1983, pp. 425–35.

    Google Scholar 

  5. B. Berge, K. Grjotheim, C. Krohn, R. Naeumann, and K. Torklep:Light Metals, AIME, New York, NY, 1973, vol. 1, pp. 57–81.

    Google Scholar 

  6. S. Ostrach: Report 1111, National Advisory Committee for Aeronautics, Washington, DC, 1953.

    Google Scholar 

  7. E. R. G. Eckert and W. O. Carlson:Int. J. Heat and Mass Transfer, 1961, vol. 2, pp. 106–20.

    Article  Google Scholar 

  8. J. R. Lloyd and E. M. Sparrow:Int. J. Heat and Mass Transfer, 1970, vol. 13, pp. 434–38.

    Article  Google Scholar 

  9. E. Dernedde and E. L. Cambridge:Light Metals, AIME, New York, NY, 1975, vol. 1, pp. 111–22.

    Google Scholar 

  10. M. P. Taylor and B. J. Welch:Light Metals, AIME, New York, NY, 1985, vol. 1, pp. 781–89.

    Google Scholar 

  11. M. P. Taylor: Ph.D. Thesis, University of Auckland, Auckland, 1984.

  12. J. Thonstad and S. Rolseth:Light Metals, AIME, New York, NY, 1983, pp. 415–24.

    Google Scholar 

  13. E. M. Sparrow and P. Souza Mendes:Int. J. Heat and Mass Transfer, 1982, vol. 25, No. 2, pp. 293–97.

    Article  CAS  Google Scholar 

  14. J. A. Ede: inAdvances in Heat Transfer, Academic Press, New York, NY, 1967, vol. 4, ch. 1.

    Google Scholar 

  15. R. S. Tankin and R. Farhadieh:Int. J. Heat and Mass Transfer, 1971, vol. 14, pp. 953–61.

    Article  CAS  Google Scholar 

  16. W.E. Haupin:Light Metals, AIME, New York, NY, 1971, vol. 1, pp. 188–94.

    Google Scholar 

  17. A. Rubel and F. Landis:Phys. Fluids, Suppl. II, 1969, vol. 12, pp. II.208–13.

    Google Scholar 

  18. D. Coles:Fluid Mech., 1965, vol. 21, No. 3, pp. 385–425.

    Article  Google Scholar 

  19. F. Kreith: inAdvances in Heat Transfer, Academic Press, New York, NY, 1968, vol. 5, ch. 3.

    Google Scholar 

  20. G. Maples, D. R. Dyer, K. Askin, and D. Maples:J. Heat Transfer, 1973, vol. 95, pp. 546–47.

    Google Scholar 

  21. E. H. Bishop, L. R. Mack, and J. A. Scanlan:Int. J. Heat and Mass Transfer, 1966, vol. 9, pp. 649–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, M.P., Welch, B.J. Melt/freeze heat transfer measurements in cryolite-based electrolytes. Metall Trans B 18, 391–398 (1987). https://doi.org/10.1007/BF02656158

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656158

Keywords

Navigation